SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tubiana A) ;pers:(Davidsson Björn)"

Sökning: WFRF:(Tubiana A) > Davidsson Björn

  • Resultat 1-10 av 45
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Grun, E., et al. (författare)
  • The 2016 Feb 19 outburst of comet 67P/CG : an ESA Rosetta multi-instrument study
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 462, s. S220-S234
  • Tidskriftsartikel (refereegranskat)abstract
    • On 2016 Feb 19, nine Rosetta instruments serendipitously observed an outburst of gas and dust from the nucleus of comet 67P/Churyumov-Gerasimenko. Among these instruments were cameras and spectrometers ranging from UV over visible to microwave wavelengths, in situ gas, dust and plasma instruments, and one dust collector. At 09: 40 a dust cloud developed at the edge of an image in the shadowed region of the nucleus. Over the next two hours the instruments recorded a signature of the outburst that significantly exceeded the background. The enhancement ranged from 50 per cent of the neutral gas density at Rosetta to factors > 100 of the brightness of the coma near the nucleus. Dust related phenomena (dust counts or brightness due to illuminated dust) showed the strongest enhancements (factors > 10). However, even the electron density at Rosetta increased by a factor 3 and consequently the spacecraft potential changed from similar to-16 V to -20 V during the outburst. A clear sequence of events was observed at the distance of Rosetta ( 34 km from the nucleus): within 15 min the Star Tracker camera detected fast particles (similar to 25 m s(-1)) while 100 mu m radius particles were detected by the GIADA dust instrument similar to 1 h later at a speed of 6 m s(-1). The slowest were individual mm to cm sized grains observed by the OSIRIS cameras. Although the outburst originated just outside the FOV of the instruments, the source region and the magnitude of the outburst could be determined.
  •  
2.
  • Fulle, M., et al. (författare)
  • Evolution Of The Dust Size Distribution Of Comet 67P/Churyumov-Gerasimenko From 2.2 Au To Perihelion
  • 2016
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 821:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Rosetta probe, orbiting Jupiter-family comet 67P/Churyumov-Gerasimenko, has been detecting individual dust particles of mass larger than 10(-10) kg by means of the GIADA dust collector and the OSIRIS Wide Angle Camera and Narrow Angle Camera since 2014 August and will continue until 2016 September. Detections of single dust particles allow us to estimate the anisotropic dust flux from 67P, infer the dust loss rate and size distribution at the surface of the sunlit nucleus, and see whether the dust size distribution of 67P evolves in time. The velocity of the Rosetta orbiter, relative to 67P, is much lower than the dust velocity measured by GIADA, thus dust counts when GIADA is nadir-pointing will directly provide the dust flux. In OSIRIS observations, the dust flux is derived from the measurement of the dust space density close to the spacecraft. Under the assumption of radial expansion of the dust, observations in the nadir direction provide the distance of the particles by measuring their trail length, with a parallax baseline determined by the motion of the spacecraft. The dust size distribution at sizes > 1 mm observed by OSIRIS is consistent with a differential power index of -4, which was derived from models of 67P's trail. At sizes <1 mm, the size distribution observed by GIADA shows a strong time evolution, with a differential power index drifting from -2 beyond 2 au to -3.7 at perihelion, in agreement with the evolution derived from coma and tail models based on ground-based data. The refractory-to-water mass ratio of the nucleus is close to six during the entire inbound orbit and at perihelion.
  •  
3.
  • El-Maarry, M. R., et al. (författare)
  • Fractures on comet 67P/Churyumov-Gerasimenko observed by Rosetta/OSIRIS
  • 2015
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 42:13, s. 5170-5178
  • Tidskriftsartikel (refereegranskat)abstract
    • The Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) experiment onboard the Rosetta spacecraft currently orbiting comet 67P/Churyumov-Gerasimenko has yielded unprecedented views of a comet's nucleus. We present here the first ever observations of meter-scale fractures on the surface of a comet. Some of these fractures form polygonal networks. We present an initial assessment of their morphology, topology, and regional distribution. Fractures are ubiquitous on the surface of the comet's nucleus. Furthermore, they occur in various settings and show different topologies suggesting numerous formation mechanisms, which include thermal insulation weathering, orbital-induced stresses, and possibly seasonal thermal contraction. However, we conclude that thermal insolation weathering is responsible for creating most of the observed fractures based on their morphology and setting in addition to thermal models that indicate diurnal temperature ranges exceeding 200K and thermal gradients of similar to 15K/min at perihelion are possible. Finally, we suggest that fractures could be a facilitator in surface evolution and long-term erosion.
  •  
4.
  • El-Maarry, M. R., et al. (författare)
  • Regional surface morphology of comet 67P/Churyumov-Gerasimenko from Rosetta/OSIRIS images
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 583
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. The OSIRIS camera onboard the Rosetta spacecraft has been acquiring images of the comet 67P/Churyumov-Gerasimenko (67P)'s nucleus at spatial resolutions down to similar to 0.17 m/px ever since Aug. 2014. These images have yielded unprecedented insight into the morphological diversity of the comet's surface. This paper presents an overview of the regional morphology of comet 67P. Methods. We used the images that were acquired at orbits similar to 20-30 km from the center of the comet to distinguish different regions on the surface and introduce the basic regional nomenclature adopted by all papers in this Rosetta special feature that address the comet's morphology and surface processes. We used anaglyphs to detect subtle regional and topographical boundaries and images from close orbit (similar to 10 km from the comet's center) to investigate the fine texture of the surface. Results. Nineteen regions have currently been defined on the nucleus based on morphological and/or structural boundaries, and they can be grouped into distinctive region types. Consolidated, fractured regions are the most common region type. Some of these regions enclose smooth units that appear to settle in gravitational sinks or topographically low areas. Both comet lobes have a significant portion of their surface covered by a dusty coating that appears to be recently placed and shows signs of mobilization by aeolian-like processes. The dusty coatings cover most of the regions on the surface but are notably absent from a couple of irregular large depressions that show sharp contacts with their surroundings and talus-like deposits in their interiors, which suggests that short-term explosive activity may play a significant role in shaping the comet's surface in addition to long-term sublimation loss. Finally, the presence of layered brittle units showing signs of mechanical failure predominantly in one of the comet's lobes can indicate a compositional heterogeneity between the two lobes.
  •  
5.
  • Lara, L. M., et al. (författare)
  • Large-scale dust jets in the coma of 67P/Churyumov-Gerasimenko as seen by the OSIRIS instrument onboard Rosetta
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 583
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. During the most recent perihelion passage in 2009 of comet 67P/Churyumov-Gerasimenko (67P), ground-based observations showed an anisotropic dust coma where jet-like features were detected at similar to 1.3 AU from the Sun. The current perihelion passage is exceptional as the Rosetta spacecraft is monitoring the nucleus activity since March 2014, when a clear dust coma was already surrounding the nucleus at 4.3 AU from the Sun. Subsequently, the OSIRIS camera also witnessed an outburst in activity between April 27 and 30, and since mid-July, the dust coma at rh similar to 3.7-3.6 AU preperihelion is clearly non-isotropic, pointing to the existence of dust jet-like features. Aims. We aim to ascertain on the nucleus surface the origin of the dust jet-like features detected as early as in mid-July 2014. This will help to establish how the localized comet nucleus activity compares with that seen in previous apparitions and will also help following its evolution as the comet approaches its perihelion, at which phase most of the jets were detected from ground-based observations. Determining these areas also allows locating them in regions on the nucleus with spectroscopic or geomorphological distinct characteristics. Methods. Three series of dust images of comet 67P obtained with the Wide Angle Camera (WAC) of the OSIRIS instrument onboard the Rosetta spacecraft were processed with different enhancement techniques. This was made to clearly show the existence of jet-like features in the dust coma, whose appearance toward the observer changed as a result of the rotation of the comet nucleus and of the changing observing geometry from the spacecraft. The position angles of these features in the coma together with information on the observing geometry, nucleus shape, and rotation, allowed us to determine the most likely locations on the nucleus surface where the jets originate from. Results. Geometrical tracing of jet sources indicates that the activity of the nucleus of 67P gave rise during July and August 2014 to large-scale jet-like features from the Hapi, Hathor, Anuket, and Aten regions, confirming that active regions may be present on the nucleus localized at 60. northern latitude as deduced from previous comet apparitions. There are also hints that large-scale jets observed from the ground are possibly composed, at their place of origin on the nucleus surface, of numerous small-scale features.
  •  
6.
  • Pommerol, A., et al. (författare)
  • OSIRIS observations of meter-sized exposures of H2O ice at the surface of 67P/Churyumov-Gerasimenko and interpretation using laboratory experiments
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 583
  • Tidskriftsartikel (refereegranskat)abstract
    • Since OSIRIS started acquiring high-resolution observations of the surface of the nucleus of comet 67P/Churyumov-Gerasimenko, over one hundred meter-sized bright spots have been identified in numerous types of geomorphologic regions, but mostly located in areas receiving low insolation. The bright spots are either clustered, in debris fields close to decameter-high cliffs, or isolated without structural relation to the surrounding terrain. They can be up to ten times brighter than the average surface of the comet at visible wavelengths and display a significantly bluer spectrum. They do not exhibit significant changes over a period of a few weeks. All these observations are consistent with exposure of water ice at the surface of boulders produced by dislocation of the weakly consolidated layers that cover large areas of the nucleus. Laboratory experiments show that under simulated comet surface conditions, analog samples acquire a vertical stratification with an uppermost porous mantle of refractory dust overlaying a layer of hard ice formed by recondensation or sintering under the insulating dust mantle. The evolution of the visible spectrophotometric properties of samples during sublimation is consistent with the contrasts of brightness and color seen at the surface of the nucleus. Clustered bright spots are formed by the collapse of overhangs that is triggered by mass wasting of deeper layers. Isolated spots might be the result of the emission of boulders at low velocity that are redepositioned in other regions.
  •  
7.
  • Auger, A. -T, et al. (författare)
  • Geomorphology of the Imhotep region on comet 67P/Churyumov-Gerasimenko from OSIRIS observations
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 583
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Since August 2014, the OSIRIS Narrow Angle Camera (NAC) onboard the Rosetta spacecraft has acquired high spatial resolution images of the nucleus of comet 67P/Churyumov-Gerasimenko, down to the decimeter scale. This paper focuses on the Imhotep region, located on the largest lobe of the nucleus, near the equator. Aims. We map, inventory, and describe the geomorphology of the Imhotep region. We propose and discuss some processes to explain the formation and ongoing evolution of this region. Methods. We used OSIRIS NAC images, gravitational heights and slopes, and digital terrain models to map and measure the morphologies of Imhotep. Results. The Imhotep region presents a wide variety of terrains and morphologies: smooth and rocky terrains, bright areas, linear features, roundish features, and boulders. Gravity processes such as mass wasting and collapse play a significant role in the geomorphological evolution of this region. Cometary processes initiate erosion and are responsible for the formation of degassing conduits that are revealed by elevated roundish features on the surface. We also propose a scenario for the formation and evolution of the Imhotep region; this implies the presence of large primordial voids inside the nucleus, resulting from its formation process.
  •  
8.
  • Frattin, E., et al. (författare)
  • Post-perihelion photometry of dust grains in the coma of 67P Churyumov-Gerasimenko
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 469, s. S195-S203
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a photometric analysis of individual dust grains in the coma of comet 67P/Churyumov-Gerasimenko using OSIRIS images taken from 2015 July to 2016 January. We analysed a sample of 555 taken during 18 d at heliocentric distances ranging between 1.25 and 2.04 au and at nucleocentric distances between 80 and 437 km. An automated method to detect the tracks was specifically developed. The images were taken by OSIRIS NAC in four different filters: Near-IR (882 nm), Orange (649 nm), FarOrange (649 nm) and Blue (480 nm). It was not always possible to recognize all the grains in the four filters, hence we measured the spectral slope in two wavelengths ranges: in the interval [480-649] nm, for 1179 grains, and in the interval [649-882] nm, for 746 grains. We studied the evolution of the two populations' average spectral slopes. The data result scattered around the average value in the range [480-649] nm, while in the [649-882] nm we observe a slight decreasing moving away from the Sun as well as a slight increasing with the nucleocentric distance. A spectrophotometric analysis was performed on a subsample of 339 grains. Three major groups were defined, based on the spectral slope between [535-882] nm: (i) the steep spectra that may be related with organic material, (ii) the spectra with an intermediate slope, likely a mixture of silicates and organics and (iii) flat spectra that may be associated with a high abundance of water ice.
  •  
9.
  • Giacomini, L., et al. (författare)
  • Geologic mapping of the Comet 67P/Churyumov-Gerasimenko's Northern hemisphere
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 462, s. S352-S369
  • Tidskriftsartikel (refereegranskat)abstract
    • The Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS), the scientific imaging system onboard the Rosetta mission, has been acquiring images of the nucleus of the comet 67P/Churyumov-Gerasimenko since 2014 August with a resolution which allows a detailed analysis of its surface. Indeed, data reveal a complex surface morphology which is likely the expression of different processes which occurred at different times on the cometary nucleus. In order to characterize these different morphologies and better understand their distribution, we performed a geologic mapping of comet's 67P Northern hemisphere in which features have been distinguished based on their morphological, textural and stratigraphic characteristics. For this purpose, we used narrow-angle camera images acquired in 2014 August and September with a spatial scale ranging from 1.2 to 2.4 m pixel(-1). Several different geologic units have been identified on the basis of their different surface textures, granulometry and morphology. Some of these units are distinctive and localized, whereas others are more common and distributed all over the Northern hemisphere. Moreover, different types of linear features have been distinguished on the basis of their morphology. Some of these lineaments have never been observed before on a comet and can offer important clues on the internal structures of the nucleus itself. The geologic mapping results presented here will allow us to better understand the processes which affected the nucleus' surface and thus the origin and evolutionary history of comet 67P/Churyumov-Gerasimenko.
  •  
10.
  • Gicquel, A., et al. (författare)
  • Sublimation of icy aggregates in the coma of comet 67P/Churyumov-Gerasimenko detected with the OSIRIS cameras on board Rosetta
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 462, s. S57-S66
  • Tidskriftsartikel (refereegranskat)abstract
    • Beginning in 2014 March, the OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) cameras began capturing images of the nucleus and coma (gas and dust) of comet 67P/Churyumov-Gerasimenko using both the wide angle camera (WAC) and the narrow angle camera (NAC). The many observations taken since July of 2014 have been used to study the morphology, location, and temporal variation of the comet's dust jets. We analysed the dust monitoring observations shortly after the southern vernal equinox on 2015 May 30 and 31 with the WAC at the heliocentric distance R-h = 1.53 AU, where it is possible to observe that the jet rotates with the nucleus. We found that the decline of brightness as a function of the distance of the jet is much steeper than the background coma, which is a first indication of sublimation. We adapted a model of sublimation of icy aggregates and studied the effect as a function of the physical properties of the aggregates (composition and size). The major finding of this paper was that through the sublimation of the aggregates of dirty grains (radius a between 5 and 50 mu m) we were able to completely reproduce the radial brightness profile of a jet beyond 4 km from the nucleus. To reproduce the data, we needed to inject a number of aggregates between 8.5 x 10(13) and 8.5 x 10(10) for a = 5 and 50 mu m, respectively, or an initial mass of H2O ice around 22 kg.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 45

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy