SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tuomi Tiinamaija) ;lar1:(uu)"

Sökning: WFRF:(Tuomi Tiinamaija) > Uppsala universitet

  • Resultat 1-10 av 34
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahlqvist, Emma, et al. (författare)
  • Novel subgroups of adult-onset diabetes and their association with outcomes : a data-driven cluster analysis of six variables
  • 2018
  • Ingår i: The Lancet Diabetes and Endocrinology. - 2213-8587 .- 2213-8595. ; 6:5, s. 361-369
  • Tidskriftsartikel (refereegranskat)abstract
    •  BackgroundDiabetes is presently classified into two main forms, type 1 and type 2 diabetes, but type 2 diabetes in particular is highly heterogeneous. A refined classification could provide a powerful tool to individualise treatment regimens and identify individuals with increased risk of complications at diagnosis.MethodsWe did data-driven cluster analysis (k-means and hierarchical clustering) in patients with newly diagnosed diabetes (n=8980) from the Swedish All New Diabetics in Scania cohort. Clusters were based on six variables (glutamate decarboxylase antibodies, age at diagnosis, BMI, HbA1c, and homoeostatic model assessment 2 estimates of β-cell function and insulin resistance), and were related to prospective data from patient records on development of complications and prescription of medication. Replication was done in three independent cohorts: the Scania Diabetes Registry (n=1466), All New Diabetics in Uppsala (n=844), and Diabetes Registry Vaasa (n=3485). Cox regression and logistic regression were used to compare time to medication, time to reaching the treatment goal, and risk of diabetic complications and genetic associations.FindingsWe identified five replicable clusters of patients with diabetes, which had significantly different patient characteristics and risk of diabetic complications. In particular, individuals in cluster 3 (most resistant to insulin) had significantly higher risk of diabetic kidney disease than individuals in clusters 4 and 5, but had been prescribed similar diabetes treatment. Cluster 2 (insulin deficient) had the highest risk of retinopathy. In support of the clustering, genetic associations in the clusters differed from those seen in traditional type 2 diabetes.InterpretationWe stratified patients into five subgroups with differing disease progression and risk of diabetic complications. This new substratification might eventually help to tailor and target early treatment to patients who would benefit most, thereby representing a first step towards precision medicine in diabetes.
  •  
2.
  • Asplund, Olof, et al. (författare)
  • Islet Gene View-a tool to facilitate islet research
  • 2022
  • Ingår i: Life Science Alliance. - : Life Science Alliance, LLC. - 2575-1077. ; 5:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Characterization of gene expression in pancreatic islets and its alteration in type 2 diabetes (T2D) are vital in understanding islet function and T2D pathogenesis. We leveraged RNA sequencing and genome-wide genotyping in islets from 188 donors to create the Islet Gene View (IGW) platform to make this information easily accessible to the scientific community. Expression data were related to islet phenotypes, diabetes status, other islet-expressed genes, islet hormone-encoding genes and for expression in insulin target tissues. The IGW web application produces output graphs for a particular gene of interest. In IGW, 284 differentially expressed genes (DEGs) were identified in T2D donor islets compared with controls. Forty percent of DEGs showed cell-type enrichment and a large proportion significantly co-expressed with islet hormone-encoding genes; glucagon (GCG, 56%), amylin (IAPP, 52%), insulin (INS, 44%), and somatostatin (SST, 24%). Inhibition of two DEGs, UNC5D and SERPINE2, impaired glucose-stimulated insulin secretion and impacted cell survival in a human beta-cell model. The exploratory use of IGW could help designing more comprehensive functional follow-up studies and serve to identify therapeutic targets in T2D.
  •  
3.
  • Broadaway, K Alaine, et al. (författare)
  • Loci for insulin processing and secretion provide insight into type 2 diabetes risk.
  • 2023
  • Ingår i: American Journal of Human Genetics. - : Elsevier. - 0002-9297 .- 1537-6605. ; 110:2, s. 284-299
  • Tidskriftsartikel (refereegranskat)abstract
    • Insulin secretion is critical for glucose homeostasis, and increased levels of the precursor proinsulin relative to insulin indicate pancreatic islet beta-cell stress and insufficient insulin secretory capacity in the setting of insulin resistance. We conducted meta-analyses of genome-wide association results for fasting proinsulin from 16 European-ancestry studies in 45,861 individuals. We found 36 independent signals at 30 loci (p value < 5 × 10-8), which validated 12 previously reported loci for proinsulin and ten additional loci previously identified for another glycemic trait. Half of the alleles associated with higher proinsulin showed higher rather than lower effects on glucose levels, corresponding to different mechanisms. Proinsulin loci included genes that affect prohormone convertases, beta-cell dysfunction, vesicle trafficking, beta-cell transcriptional regulation, and lysosomes/autophagy processes. We colocalized 11 proinsulin signals with islet expression quantitative trait locus (eQTL) data, suggesting candidate genes, including ARSG, WIPI1, SLC7A14, and SIX3. The NKX6-3/ANK1 proinsulin signal colocalized with a T2D signal and an adipose ANK1 eQTL signal but not the islet NKX6-3 eQTL. Signals were enriched for islet enhancers, and we showed a plausible islet regulatory mechanism for the lead signal in the MADD locus. These results show how detailed genetic studies of an intermediate phenotype can elucidate mechanisms that may predispose one to disease.
  •  
4.
  • Fall, Tove, et al. (författare)
  • The Role of Adiposity in Cardiometabolic Traits : A Mendelian Randomization Analysis
  • 2013
  • Ingår i: PLoS Medicine. - : Public Library of Science (PLoS). - 1549-1277 .- 1549-1676. ; 10:6, s. e1001474-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The association between adiposity and cardiometabolic traits is well known from epidemiological studies. Whilst the causal relationship is clear for some of these traits, for others it is not. We aimed to determine whether adiposity is causally related to various cardiometabolic traits using the Mendelian randomization approach. Methods and Findings: We used the adiposity-associated variant rs9939609 at the FTO locus as an instrumental variable (IV) for body mass index (BMI) in a Mendelian randomization design. Thirty-six population-based studies of individuals of European descent contributed to the analyses. Age-and sex-adjusted regression models were fitted to test for association between (i) rs9939609 and BMI (n = 198,502), (ii) rs9939609 and 24 traits, and (iii) BMI and 24 traits. The causal effect of BMI on the outcome measures was quantified by IV estimators. The estimators were compared to the BMI-trait associations derived from the same individuals. In the IV analysis, we demonstrated novel evidence for a causal relationship between adiposity and incident heart failure (hazard ratio, 1.19 per BMI-unit increase; 95% CI, 1.03-1.39) and replicated earlier reports of a causal association with type 2 diabetes, metabolic syndrome, dyslipidemia, and hypertension (odds ratio for IV estimator, 1.1-1.4; all p<0.05). For quantitative traits, our results provide novel evidence for a causal effect of adiposity on the liver enzymes alanine aminotransferase and gamma-glutamyl transferase and confirm previous reports of a causal effect of adiposity on systolic and diastolic blood pressure, fasting insulin, 2-h post-load glucose from the oral glucose tolerance test, C-reactive protein, triglycerides, and high-density lipoprotein cholesterol levels (all p<0.05). The estimated causal effects were in agreement with traditional observational measures in all instances except for type 2 diabetes, where the causal estimate was larger than the observational estimate (p = 0.001). Conclusions: We provide novel evidence for a causal relationship between adiposity and heart failure as well as between adiposity and increased liver enzymes.
  •  
5.
  • Flannick, Jason, et al. (författare)
  • Data Descriptor : Sequence data and association statistics from 12,940 type 2 diabetes cases and controls
  • 2017
  • Ingår i: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1-5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (> 80% of low-frequency coding variants in similar to ~82 K Europeans via the exome chip, and similar to ~90% of low-frequency non-coding variants in similar to ~44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D.
  •  
6.
  • Flannick, Jason, et al. (författare)
  • Loss-of-function mutations in SLC30A8 protect against type 2 diabetes.
  • 2014
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 46:4, s. 357-357
  • Tidskriftsartikel (refereegranskat)abstract
    • Loss-of-function mutations protective against human disease provide in vivo validation of therapeutic targets, but none have yet been described for type 2 diabetes (T2D). Through sequencing or genotyping of ∼150,000 individuals across 5 ancestry groups, we identified 12 rare protein-truncating variants in SLC30A8, which encodes an islet zinc transporter (ZnT8) and harbors a common variant (p.Trp325Arg) associated with T2D risk and glucose and proinsulin levels. Collectively, carriers of protein-truncating variants had 65% reduced T2D risk (P = 1.7 × 10(-6)), and non-diabetic Icelandic carriers of a frameshift variant (p.Lys34Serfs*50) demonstrated reduced glucose levels (-0.17 s.d., P = 4.6 × 10(-4)). The two most common protein-truncating variants (p.Arg138* and p.Lys34Serfs*50) individually associate with T2D protection and encode unstable ZnT8 proteins. Previous functional study of SLC30A8 suggested that reduced zinc transport increases T2D risk, and phenotypic heterogeneity was observed in mouse Slc30a8 knockouts. In contrast, loss-of-function mutations in humans provide strong evidence that SLC30A8 haploinsufficiency protects against T2D, suggesting ZnT8 inhibition as a therapeutic strategy in T2D prevention.
  •  
7.
  • Fuchsberger, Christian, et al. (författare)
  • The genetic architecture of type 2 diabetes
  • 2016
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 536:7614, s. 41-47
  • Tidskriftsartikel (refereegranskat)abstract
    • The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes.
  •  
8.
  • Gaulton, Kyle J, et al. (författare)
  • Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci.
  • 2015
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 47:12, s. 1415-1415
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease.
  •  
9.
  • Heid, Iris M, et al. (författare)
  • Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution
  • 2010
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:11, s. 949-960
  • Tidskriftsartikel (refereegranskat)abstract
    • Waist-hip ratio (WHR) is a measure of body fat distribution and a predictor of metabolic consequences independent of overall adiposity. WHR is heritable, but few genetic variants influencing this trait have been identified. We conducted a meta-analysis of 32 genome-wide association studies for WHR adjusted for body mass index (comprising up to 77,167 participants), following up 16 loci in an additional 29 studies (comprising up to 113,636 subjects). We identified 13 new loci in or near RSPO3, VEGFA, TBX15-WARS2, NFE2L3, GRB14, DNM3-PIGC, ITPR2-SSPN, LY86, HOXC13, ADAMTS9, ZNRF3-KREMEN1, NISCH-STAB1 and CPEB4 (P = 1.9 × 10⁻⁹ to P = 1.8 × 10⁻⁴⁰) and the known signal at LYPLAL1. Seven of these loci exhibited marked sexual dimorphism, all with a stronger effect on WHR in women than men (P for sex difference = 1.9 × 10⁻³ to P = 1.2 × 10⁻¹³). These findings provide evidence for multiple loci that modulate body fat distribution independent of overall adiposity and reveal strong gene-by-sex interactions.
  •  
10.
  • Hermann, Florian M., et al. (författare)
  • An insulin hypersecretion phenotype precedes pancreatic beta cell failure in MODY3 patient-specific cells
  • 2023
  • Ingår i: Cell Stem Cell. - : Elsevier. - 1934-5909 .- 1875-9777. ; 30:1, s. 38-51
  • Tidskriftsartikel (refereegranskat)abstract
    • MODY3 is a monogenic hereditary form of diabetes caused by mutations in the transcription factor HNF1A. The patients progressively develop hyperglycemia due to perturbed insulin secretion, but the pathogenesis is unknown. Using patient-specific hiPSCs, we recapitulate the insulin secretion sensitivity to the membrane depolarizing agent sulfonylurea commonly observed in MODY3 patients. Unexpectedly, MODY3 patient -specific HNF1A+/R272C R cells hypersecrete insulin both in vitro and in vivo after transplantation into mice. Consistently, we identified a trend of increased birth weight in human HNF1A mutation carriers compared with healthy siblings. Reduced expression of potassium channels, specifically the KATP channel, in MODY3 0 cells, increased calcium signaling, and rescue of the insulin hypersecretion phenotype by pharmacological targeting ATP-sensitive potassium channels or low-voltage-activated calcium channels suggest that more efficient membrane depolarization underlies the hypersecretion of insulin in MODY3 0 cells. Our findings identify a pathogenic mechanism leading to 0 cell failure in MODY3.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 34
Typ av publikation
tidskriftsartikel (34)
Typ av innehåll
refereegranskat (34)
Författare/redaktör
Tuomi, Tiinamaija (34)
Groop, Leif (30)
Laakso, Markku (20)
McCarthy, Mark I (20)
Boehnke, Michael (20)
Mohlke, Karen L (19)
visa fler...
Tuomilehto, Jaakko (19)
Wareham, Nicholas J. (18)
Lind, Lars (17)
Hansen, Torben (17)
Langenberg, Claudia (17)
Jackson, Anne U. (17)
Salomaa, Veikko (16)
Isomaa, Bo (16)
Grarup, Niels (16)
Pedersen, Oluf (16)
Kuusisto, Johanna (15)
Barroso, Ines (15)
Prokopenko, Inga (15)
Frayling, Timothy M (15)
Collins, Francis S. (15)
Ingelsson, Erik (14)
Meigs, James B. (14)
Grallert, Harald (14)
Froguel, Philippe (13)
Palmer, Colin N. A. (13)
Loos, Ruth J F (13)
Dupuis, Josée (13)
Bonnycastle, Lori L. (13)
Linneberg, Allan (12)
Thorleifsson, Gudmar (12)
Stefansson, Kari (12)
Mahajan, Anubha (12)
Luan, Jian'an (12)
Karpe, Fredrik (12)
Morris, Andrew D (12)
Zeggini, Eleftheria (12)
Esko, Tõnu (12)
Lyssenko, Valeriya (11)
Deloukas, Panos (11)
Thorsteinsdottir, Un ... (11)
Gieger, Christian (11)
Hattersley, Andrew T (11)
Metspalu, Andres (11)
Kovacs, Peter (11)
Altshuler, David (11)
Illig, Thomas (11)
Boerwinkle, Eric (11)
Ferreira, Teresa (11)
Narisu, Narisu (11)
visa färre...
Lärosäte
Lunds universitet (29)
Karolinska Institutet (17)
Umeå universitet (11)
Göteborgs universitet (3)
Stockholms universitet (2)
Språk
Engelska (34)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (31)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy