SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Turner J) ;lar1:(ltu)"

Sökning: WFRF:(Turner J) > Luleå tekniska universitet

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Breitbarth, E., et al. (författare)
  • Iron biogeochemistry across marine systems : progress from the past decade
  • 2010
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 7:3, s. 1075-1097
  • Tidskriftsartikel (refereegranskat)abstract
    • Based on an international workshop (Gothenburg, 14-16 May 2008), this review article aims to combine interdisciplinary knowledge from coastal and open ocean research on iron biogeochemistry. The major scientific findings of the past decade are structured into sections on natural and artificial iron fertilization, iron inputs into coastal and estuarine systems, colloidal iron and organic matter, and biological processes. Potential effects of global climate change, particularly ocean acidification, on iron biogeochemistry are discussed. The findings are synthesized into recommendations for future research areas
  •  
2.
  • Breitbarth, Eike, et al. (författare)
  • Dissolved iron (II) in the Baltic Sea surface water and implications for cyanobacterial bloom development
  • 2009
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 6:Special issue, s. 2397-2420
  • Tidskriftsartikel (refereegranskat)abstract
    • Iron chemistry measurements were conducted during summer 2007 at two distinct locations in the Baltic Sea (Gotland Deep and Landsort Deep) to evaluate the role of iron for cyanobacterial bloom development in these estuarine waters. Depth profiles of Fe(II) were measured by chemiluminescent flow injection analysis (CL-FIA). Up to 0.9 nmol Fe(II) L−1 were detected in light penetrated surface waters, which constitutes up to 20% to the dissolved Fe pool. This bioavailable iron source is a major contributor to the Fe requirements of Baltic Sea phytoplankton and apparently plays a major role for cyanobacterial bloom development during our study. Measured Fe(II) half life times in oxygenated water exceed predicted values and indicate organic Fe(II) complexation. Potential sources for Fe(II) ligands, including rainwater, are discussed. Fe(II) concentrations of up to 1.44 nmol L−1 were detected at water depths below the euphotic zone, but above the oxic anoxic interface. Mixed layer depths after strong wind events are not deep enough in summer time to penetrate the oxic-anoxic boundary layer. However, Fe(II) from anoxic bottom water may enter the sub-oxic zone via diapycnal mixing and diffusion.
  •  
3.
  • Kratz, David P., et al. (författare)
  • An inter-comparison of far-infrared line-by-line radiative transfer models
  • 2005
  • Ingår i: Journal of Quantitative Spectroscopy and Radiative Transfer. - : Elsevier BV. - 0022-4073 .- 1879-1352. ; 90:3-4, s. 323-341
  • Tidskriftsartikel (refereegranskat)abstract
    • A considerable fraction (>40%) of the outgoing longwave radiation escapes from the Earth's atmosphere-surface system within a region of the spectrum known as the far-infrared (wave-numbers less than ). Dominated by the line and continuum spectral features of the pure rotation band of water vapor, the far-infrared has a strong influence upon the radiative balance of the troposphere, and hence upon the climate of the Earth. Despite the importance of the far-infrared contribution, however, very few spectrally resolved observations have been made of the atmosphere for wave-numbers less than . The National Aeronautics and Space Administration (NASA), under its Instrument Incubator Program (IIP), is currently developing technology that will enable routine, space-based spectral measurements of the far-infrared. As part of NASA's IIP, the Far-Infrared Spectroscopy of the Troposphere (FIRST) project is developing an instrument that will have the capability of measuring the spectrum over the range from 100 to at a resolution of . To properly analyze the data from the FIRST instrument, accurate radiative transfer models will be required. Unlike the mid-infrared, however, no inter-comparison of codes has been performed for the far-infrared. Thus, in parallel with the development of the FIRST instrument, an investigation has been undertaken to inter-compare radiative transfer models for potential use in the analysis of far-infrared measurements. The initial phase of this investigation has focused upon the inter-comparison of six distinct line-by-line models. The results from this study have demonstrated remarkably good agreement among the models, with differences being of order 0.5%, thereby providing a high measure of confidence in our ability to accurately compute spectral radiances in the far-infrared.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy