SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Turner J) ;lar1:(mdh)"

Sökning: WFRF:(Turner J) > Mälardalens universitet

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arft, M, et al. (författare)
  • Responses of tundra plants to experimental warming : Meta-analysis of the international tundra experiment
  • 1999
  • Ingår i: Ecological Monographs. - 0012-9615 .- 1557-7015. ; 69:4, s. 491-511
  • Tidskriftsartikel (refereegranskat)abstract
    • The International Tundra Experiment (ITEX) is a collaborative, multisite experiment using a common temperature manipulation to examine variability in species response across climatic and geographic gradients of tundra ecosystems. ITEX was designed specifically to examine variability in arctic and alpine species response to increased temperature. We compiled from one to four years of experimental data from 13 different ITEX sites and used meta-analysis to analyze responses of plant phenology, growth, and reproduction to experimental warming. Results indicate that key phenological events such as leaf bud burst and flowering occurred earlier in warmed plots throughout the study period; however, there was little impact on growth cessation at the end of the season. Quantitative measures of vegetative growth were greatest in warmed plots in the early years of the experiment, whereas reproductive effort and success increased in later years. A shift away from vegetative growth and toward reproductive effort and success in the fourth treatment year suggests a shift from the initial response to a secondary response. The change in vegetative response may be due to depletion of stored plant reserves, whereas the lag in reproductive response may be due to the formation of flower buds one to several seasons prior to flowering. Both vegetative and reproductive responses varied among life-forms; herbaceous forms had stronger and more consistent vegetative growth responses than did woody forms. The greater responsiveness of the herbaceous forms may be attributed to their more flexible morphology and to their relatively greater proportion of stored plant reserves. Finally, warmer, low arctic sites produced the strongest growth responses, but colder sites produced a greater reproductive response. Greater resource investment in vegetative growth may be a conservative strategy in the Low Arctic, where there is more competition for light, nutrients, or water, and there may be little opportunity for successful germination or seedling development. In contrast, in the High Arctic, heavy investment in producing seed under a higher temperature scenario may provide an opportunity for species to colonize patches of unvegetated ground. The observed differential response to warming suggests that the primary forces driving the response vary across climatic zones, functional groups, and through time.
  •  
2.
  • Sun, J L, et al. (författare)
  • Interactions of sequence variants in interieukin-1 receptor-associated kinase4 and the Toll-like receptor 6-1-10 gene cluster increase prostate cancer risk
  • 2006
  • Ingår i: Cancer Epidemiology, Biomarkers and Prevention. - Wake Forest Univ, Sch Med, Ctr Human Genom, Winston Salem, NC 27109 USA. Wake Forest Univ, Sch Med, Dept Publ Hlth Sci, Winston Salem, NC 27109 USA. Umea Univ, Dept Radiat Sci, Umea, Sweden. Karolinska Inst, Dept Med Epidemiol & Biostat, Stockholm, Sweden. Univ Hosp Uppsala, Reg Oncol Ctr, Uppsala, Sweden. Orebro Univ Hosp, Dept Urol & Clin Med, Orebro, Sweden. Johns Hopkins Med Inst, Dept Urol, Baltimore, MD USA. : AMER ASSOC CANCER RESEARCH. - 1055-9965 .- 1538-7755. ; 15:3, s. 480-485
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic or recurrent inflammation has been suggested as a causal factor in several human malignancies, including prostate cancer. Genetic predisposition is also a strong risk factor in the development of prostate cancer. In particular, Toll-like receptors (TLR), especially the TLR6-1-10 gene cluster, are involved in prostate cancer development. Interleukin-1 receptor-associated kinases (IRAK) 1 and 4 are critical components in the TLR signaling pathway. In this large case-control study, we tested two hypotheses: (a) sequence variants in IRAK1 and IRAK4 are associated with prostate cancer risk and (b) sequence variants in IRAK1/4 and TLR1-6-10 interacts and confers a stronger risk to prostate cancer. We analyzed 11 single nucleotide polymorphisms (four in IRAK1 and seven in IRAK4) among 1,383 newly diagnosed prostate cancer patients and 780 population controls in Sweden. Although the single-nucleotide polymorphisms in IRAK1 and IRAK4 alone were not significantly associated with prostate cancer risk, one single-nucleotide polymorphism in IRAK4, when combined with the high-risk genotype at TLR6-1-10, conferred a significant excess risk of prostate cancer. In particular, men with the risk genotype at TLR6-1-10 and IRAK4-7987 CG/CC had an odds ratio of 9.68 (P = 0.03) when compared with men who had wildtype genotypes. Our findings suggest synergistic effects between sequence variants in IRAK4 and the TLR 6-1-10 gene cluster. Although this study was based on a priori hypothesis and was designed to address many common issues facing this type of study, our results need confirmation in even larger studies.
  •  
3.
  • Sun, J L, et al. (författare)
  • Sequence variants in toll-like receptor gene cluster (TLR6-TLR1-TLR10) and prostate cancer risk
  • 2005
  • Ingår i: Journal of the National Cancer Institute. - Wake Forest Univ, Sch Med, Ctr Human Genom, Winston Salem, NC 27157 USA. Umea Univ, Dept Radiat Sci & Oncol, Umea, Sweden. Karolinska Inst, Dept Med Epidemiol & Biostat, Stockholm, Sweden. Orebro Univ Hosp, Dept Urol & Clin Med, Orebro, Sweden. Univ Uppsala Hosp, Reg Oncol Ctr, Uppsala, Sweden. Johns Hopkins Sch Med, Dept Urol, Baltimore, MD USA. : OXFORD UNIV PRESS INC. - 0027-8874 .- 1460-2105. ; 97:7, s. 525-532
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Chronic inflammation plays an important role in several human cancers and may be involved in the etiology of prostate cancer. Toll-like receptors (TLRs) are important in the innate immune response to pathogens and in cross-talk between innate immunity and adaptive immunity. Our previous finding of an association of TLR4 gene sequence variants and prostate cancer risk provides evidence for a role of TLRs in prostate cancer. In this study, we investigated whether sequence variants in the TLR6-TLR1-TLR10 gene cluster, residing within a 54-kb region on 4p14, were associated with prostate cancer risk. Methods: We selected 32 single-nucleotide polymorphisms (SNPs) covering these three genes and genotyped these SNPs in 96 control subjects from the Cancer Prostate in Sweden (CAPS) population-based prostate cancer case-control study. Five distinct haplotype blocks were inferred at this region, and we identified 17 haplotype-tagging SNPs (htSNPs) that could uniquely describe < 95% of the haplotypes. These 17 htSNPs were then genotyped in the entire CAPS study population (1383 case subjects and 780 control subjects). Odds ratios of prostate cancer for the carriers of a variant allele versus those with the wild-type allele were estimated using unconditional logistic regression. Results: The allele frequencies of 11 of the 17 SNPs were statistically significantly different between case and control subjects (P = .04-.001), with odds ratios for variant allele carriers (homozygous or heterozygous) compared with wild-type allele carriers ranging from 1.20 (95% confidence interval [CI] = 1.00 to 1.43) to 1.38 (95% CI = 1.12 to 1.70). Phylogenetic tree analyses of common haplotypes identified a clade of two evolutionarily related haplotypes that are statistically significantly associated with prostate cancer risk. These two haplotypes contain all the risk alleles of these 11 associated SNPs. Conclusion: The observed multiple associated SNPs at the TLR6-TLR1-TLR10 gene cluster were dependent and suggest the presence of a founder prostate cancer risk variant on this haplotype background. The TLR6-TLR1-TLR10 gene cluster may play a role in prostate cancer risk, although further functional studies are needed to pinpoint the disease-associated variants in this gene cluster.
  •  
4.
  • Walker, M. D., et al. (författare)
  • Plant community responses to experimental warming across the tundra biome
  • 2006
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 103:5, s. 1342-1346
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent observations of changes in some tundra ecosystems appear to be responses to a warming climate. Several experimental studies have shown that tundra plants and ecosystems can respond strongly to environmental change, including warming; however, most studies were limited to a single location and were of short duration and based on a variety of experimental designs. In addition, comparisons among studies are difficult because a variety of techniques have been used to achieve experimental warming and different measurements have been used to assess responses. We used metaanalysis on plant community measurements from standardized warming experiments at 11 locations across the tundra biome involved in the International Tundra Experiment. The passive warming treatment increased plant-level air temperature by 1-3 degrees C, which is in the range of predicted and observed warming for tundra regions. Responses were rapid and detected in whole plant communities after only two growing seasons. Overall, warming increased height and cover of deciduous shrubs and graminoids, decreased cover of mosses and lichens, and decreased species diversity and evenness. These results predict that warming will cause a decline in biodiversity across a wide variety of tundra, at least in the short term. They also provide rigorous experimental evidence that recently observed increases in shrub cover in many tundra regions are in response to climate warming. These changes have important implications for processes and interactions within tundra ecosystems and between tundra and the atmosphere.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy