SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tvingstedt Kristofer) ;hsvcat:2"

Sökning: WFRF:(Tvingstedt Kristofer) > Teknik

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tang, Zheng, et al. (författare)
  • Semi-Transparent Tandem Organic Solar Cells with 90% Internal Quantum Efficiency
  • 2012
  • Ingår i: Advanced Energy Materials. - : Wiley. - 1614-6840 .- 1614-6832. ; 2:12, s. 1467-1476
  • Tidskriftsartikel (refereegranskat)abstract
    • Semi-transparent (ST) organic solar cells with potential application as power generating windows are studied. The main challenge is to find proper transparent electrodes with desired electrical and optical properties. In this work, this is addressed by employing an amphiphilic conjugated polymer PFPA-1 modified ITO coated glass substrate as the ohmic electron-collecting cathode and PEDOT:PSS PH1000 as the hole-collecting anode. For active layers based on different donor polymers, considerably lower reflection and parasitic absorption are found in the ST solar cells as compared to solar cells in the standard geometry with an ITO/PEDOT:PSS anode and a LiF/Al cathode. The ST solar cells have remarkably high internal quantum efficiency at short circuit condition (similar to 90%) and high transmittance (similar to 50%). Hence, efficient ST tandem solar cells with enhanced power conversion efficiency (PCE) compared to a single ST solar cell can be constructed by connecting the stacked two ST sub-cells in parallel. The total loss of photons by reflection, parasitic absorption and transmission in the ST tandem solar cell can be smaller than the loss in a standard solar cell based on the same active materials. We demonstrate this by stacking five separately prepared ST cells on top of each other, to obtain a higher photocurrent than in an optimized standard solar cell.
  •  
2.
  • Inganäs, Olle, et al. (författare)
  • Polymer Photovoltaics with Alternating Copolymer/Fullerene Blends and Novel Device Architectures
  • 2010
  • Ingår i: Advanced Materials. - : Wiley. - 0935-9648 .- 1521-4095. ; 22:20, s. E100-E116
  • Tidskriftsartikel (refereegranskat)abstract
    • The synthesis of novel conjugated polymers, designed for the purpose of photovoltaic energy conversion, and their properties in polymer/fullerene materials and photovoltaic devices are reviewed. Two families of main chain polymer donors, based on fluorene or phenylene and donor-acceptor-donor comonomers in alternating copolymers, are used to absorb the high-energy parts of the solar spectrum and to give high photovoltages in combinations with fullerene acceptors in devices. These materials are used in alternative photovoltaic device geometries with enhanced light incoupling to collect larger photocurrents or to enable tandem devices and enhance photovoltage.
  •  
3.
  • Bergqvist, Jonas, et al. (författare)
  • In situ reflectance imaging of organic thin film formation from solution
  • 2012
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The rapid progress of organic photovoltaic devices during the last decade, with power conversion efficiencies now exceeding 8%, has brought the technology close to an industrial breakthrough. For polymer solar cells, roll to roll printing is desired to gain the production advantage. The formation of the photoactive material from solutions needs to be controlled and optimized. Therefore a suitable method to monitor the deposition process is needed as deviations of drying times1 and drying rates2 during the coating process have proven to generate morphology variations causing variations in photocurrent generation.Here we demonstrate how reflectance imaging can be used to monitor the drying process, both for spin coating and blade coating deposition. A blue LED is used as light source to generate specular reflections imaged by a CMOS camera. The thinning of the wet film can then be observed by thin film interference, and can be recorded for each pixel. This enables an estimation of the evaporation rate for each pixel mapped over the substrate. For spin coating the evaporation rate is shown to increase with the distance from the rotation center, whereas the air flow is the determining parameter during blade coating. By mapping the times when interference ceases, lateral variations in drying time are visualized. Furthermore the quenching of polymer photoluminescence during the drying process can be visualized, thus creating a possibility to estimate morphological variations. Moreover lateral thickness variations of the dry film can be visualized by scanning ellipsometry. After depositing a top electrode photocurrent images can be generated by a laser scanning method. This allows for a direct comparison of drying conditions and photocurrent generation.  The possibility to monitor the thin film formation as well as lateral variations in thickness in-situ by a non-invasive method, is an important step for future large scale applications where stable high performing generating morphologies have to be formed over large areas.1Schmidt-Hansberg, B.; Sanyal, M.; Klein, M.F.G.; Pfaff, M.; Schnabel, N.; Jaiser, S.; Vorobiev, A.; Müller, E.; Colsmann, A.; Scharfer, P.; Gerthsen, D.; Lemmer, U.; Barrena, E.; and Schabel, W., ACS Nano 5 , 2011, 8579-85902 Hou, L.; Wang, E.; Bergqvist, J.; Andersson, V.B.; Wang, Z.; Müller, C.; Campoy-Quiles, M.; Andersson, M.R.; Zhang, F.; Inganäs, O.,Adv. Func. Mat. 21 , 2011, 3169–3175
  •  
4.
  • Müller, Christian, et al. (författare)
  • Phase behaviour of liquid-crystalline polymer/fullerene organic photovoltaic blends : thermal stability and miscibility
  • 2011
  • Ingår i: Journal of Materials Chemistry. - : RSC Publishing. - 0959-9428 .- 1364-5501. ; 21, s. 10676-10684
  • Tidskriftsartikel (refereegranskat)abstract
    • The thermal behaviour of an organic photovoltaic (OPV) binary system comprised of a liquidcrystalline fluorene-based polymer and a fullerene derivative is investigated. We employ variabletemperature ellipsometry complemented by photo- and electroluminescence spectroscopy as well as optical microscopy and scanning force nanoscopy to explore phase transitions of blend thin films. The high glass transition temperature correlates with the good thermal stability of solar cells based on these materials. Furthermore, we observe partial miscibility of the donor and acceptor together with the tendency of excess fullerene derivative to segregate into exceedingly large domains. Thus, for charge generation less adequate bulk-heterojunction nanostructures are poised to develop if this mixture is exposed to more elevated temperatures. Gratifyingly, the solubility of the fullerene derivative in the polymer phase is found to decrease if a higher molecular-weight polymer fraction is employed, which offers routes towards improving the photovoltaic performance of non-crystalline OPV blends.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy