SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ubeda Leonardo) "

Search: WFRF:(Ubeda Leonardo)

  • Result 1-10 of 12
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Donis, Daphne, et al. (author)
  • Stratification strength and light climate explain variation in chlorophyll a at the continental scale in a European multilake survey in a heatwave summer
  • 2021
  • In: Limnology and Oceanography. - : John Wiley & Sons. - 0024-3590 .- 1939-5590. ; 66:12, s. 4314-4333
  • Journal article (peer-reviewed)abstract
    • To determine the drivers of phytoplankton biomass, we collected standardized morphometric, physical, and biological data in 230 lakes across the Mediterranean, Continental, and Boreal climatic zones of the European continent. Multilinear regression models tested on this snapshot of mostly eutrophic lakes (median total phosphorus [TP] = 0.06 and total nitrogen [TN] = 0.7 mg L-1), and its subsets (2 depth types and 3 climatic zones), show that light climate and stratification strength were the most significant explanatory variables for chlorophyll a (Chl a) variance. TN was a significant predictor for phytoplankton biomass for shallow and continental lakes, while TP never appeared as an explanatory variable, suggesting that under high TP, light, which partially controls stratification strength, becomes limiting for phytoplankton development. Mediterranean lakes were the warmest yet most weakly stratified and had significantly less Chl a than Boreal lakes, where the temperature anomaly from the long-term average, during a summer heatwave was the highest (+4 degrees C) and showed a significant, exponential relationship with stratification strength. This European survey represents a summer snapshot of phytoplankton biomass and its drivers, and lends support that light and stratification metrics, which are both affected by climate change, are better predictors for phytoplankton biomass in nutrient-rich lakes than nutrient concentrations and surface temperature.
  •  
2.
  • Elmegreen, Debra Meloy, et al. (author)
  • HIERARCHICAL STAR FORMATION IN NEARBY LEGUS GALAXIES
  • 2014
  • In: Astrophysical Journal Letters. - 2041-8205. ; 787:1, s. L15-
  • Journal article (peer-reviewed)abstract
    • Hierarchical structure in ultraviolet images of 12 late-type LEGUS galaxies is studied by determining the numbers and fluxes of nested regions as a function of size from similar to 1 to similar to 200 pc, and the number as a function of flux. Two starburst dwarfs, NGC 1705 and NGC 5253, have steeper number-size and flux-size distributions than the others, indicating high fractions of the projected areas filled with star formation. Nine subregions in seven galaxies have similarly steep number-size slopes, even when the whole galaxies have shallower slopes. The results suggest that hierarchically structured star-forming regions several hundred parsecs or larger represent common unit structures. Small galaxies dominated by only a few of these units tend to be starbursts. The self-similarity of young stellar structures down to parsec scales suggests that star clusters form in the densest parts of a turbulent medium that also forms loose stellar groupings on larger scales. The presence of super star clusters in two of our starburst dwarfs would follow from the observed structure if cloud and stellar subregions more readily coalesce when self-gravity in the unit cell contributes more to the total gravitational potential.
  •  
3.
  • Gouliermis, Dimitrios A., et al. (author)
  • Hierarchical star formation across the grand-design spiral NGC 1566
  • 2017
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 468:1, s. 509-530
  • Journal article (peer-reviewed)abstract
    • We investigate how star formation is spatially organized in the grand-design spiral NGC 1566 from deep Hubble Space Telescope photometry with the Legacy ExtraGalactic UV Survey. Our contour-based clustering analysis reveals 890 distinct stellar conglomerations at various levels of significance. These star- forming complexes are organized in a hierarchical fashion with the larger congregations consisting of smaller structures, which themselves fragment into even smaller and more compact stellar groupings. Their size distribution, covering a wide range in length-scales, shows a power law as expected from scale-free processes. We explain this shape with a simple 'fragmentation and enrichment' model. The hierarchical morphology of the complexes is confirmed by their mass-size relation that can be represented by a power law with a fractional exponent, analogous to that determined for fractal molecular clouds. The surface stellar density distribution of the complexes shows a lognormal shape similar to that for supersonic non-gravitating turbulent gas. Between 50 and 65 per cent of the recently formed stars, as well as about 90 per cent of the young star clusters, are found inside the stellar complexes, located along the spiral arms. We find an age difference between young stars inside the complexes and those in their direct vicinity in the arms of at least 10 Myr. This time-scale may relate to the minimum time for stellar evaporation, although we cannot exclude the in situ formation of stars. As expected, star formation preferentially occurs in spiral arms. Our findings reveal turbulent-driven hierarchical star formation along the arms of a grand-design galaxy.
  •  
4.
  • Gouliermis, Dimitrios A., et al. (author)
  • Hierarchical star formation across the ring galaxy NGC 6503
  • 2015
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 452:4, s. 3508-3528
  • Journal article (peer-reviewed)abstract
    • We present a detailed clustering analysis of the young stellar population across the star-forming ring galaxy NGC 6503, based on the deep Hubble Space Telescope photometry obtained with the Legacy ExtraGalactic UV Survey. We apply a contour-based map analysis technique and identify in the stellar surface density map 244 distinct star-forming structures at various levels of significance. These stellar complexes are found to be organized in a hierarchical fashion with 95 per cent being members of three dominant super-structures located along the star-forming ring. The size distribution of the identified structures and the correlation between their radii and numbers of stellar members show power-law behaviours, as expected from scale-free processes. The self-similar distribution of young stars is further quantified from their autocorrelation function, with a fractal dimension of similar to 1.7 for length-scales between similar to 20 pc and 2.5 kpc. The young stellar radial distribution sets the extent of the star-forming ring at radial distances between 1 and 2.5 kpc. About 60 per cent of the young stars belong to the detected stellar structures, while the remaining stars are distributed among the complexes, still inside the ring of the galaxy. The analysis of the time-dependent clustering of young populations shows a significant change from a more clustered to a more distributed behaviour in a time-scale of similar to 60 Myr. The observed hierarchy in stellar clustering is consistent with star formation being regulated by turbulence across the ring. The rotational velocity difference between the edges of the ring suggests shear as the driving mechanism for this process. Our findings reveal the interesting case of an inner ring forming stars in a hierarchical fashion.
  •  
5.
  • Hunter, Deidre A., et al. (author)
  • A Comparison of Young Star Properties with Local Galactic Environment for LEGUS/LITTLE THINGS Dwarf Irregular Galaxies
  • 2018
  • In: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 156:1
  • Journal article (peer-reviewed)abstract
    • We have explored the role environmental factors play in determining characteristics of young stellar objects in nearby dwarf irregular and blue compact dwarf galaxies. Star clusters are characterized by concentrations, masses, and formation rates; OB associations by mass and mass surface density; O stars by their numbers and near-ultraviolet absolute magnitudes; and H II regions by H alpha surface brightnesses. These characteristics are compared to surrounding galactic pressure, stellar mass density, H I surface density, and star formation rate (SFR) surface density. We find no trend of cluster characteristics with environmental properties, implying that larger-scale effects are more important in determining cluster characteristics or that rapid dynamical evolution erases any memory of the initial conditions. On the other hand, the most massive OB associations are found at higher pressure and H I surface density, and there is a trend of higher H II region H alpha surface brightness with higher pressure, suggesting that a higher concentration of massive stars and gas is found preferentially in regions of higher pressure. At low pressures we find massive stars but not bound clusters and OB associations. We do not find evidence for an increase of cluster formation efficiency as a function of SFR density. However, there is an increase in the ratio of the number of clusters to the number of O stars with increasing pressure, perhaps reflecting an increase in clustering properties with SFR.
  •  
6.
  • Hunter, Deidre A., et al. (author)
  • A Study of Two Dwarf Irregular Galaxies with Asymmetrical Star Formation Distributions
  • 2018
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 855:1
  • Journal article (peer-reviewed)abstract
    • Two dwarf irregular galaxies, DDO 187 and NGC 3738, exhibit a striking pattern of star formation: intense star formation is taking place in a large region occupying roughly half of the inner part of the optical galaxy. We use data on the H I distribution and kinematics and stellar images and colors to examine the properties of the environment in the high star formation rate (HSF) halves of the galaxies in comparison with the low star formation rate halves. We find that the pressure and gas density are higher on the HSF sides by 30%-70%. In addition we find in both galaxies that the H I velocity fields exhibit significant deviations from ordered rotation and there are large regions of high-velocity dispersion and multiple velocity components in the gas beyond the inner regions of the galaxies. The conditions in the HSF regions are likely the result of large-scale external processes affecting the internal environment of the galaxies and enabling the current star formation there.
  •  
7.
  • Krumholz, Mark R., et al. (author)
  • STAR CLUSTER PROPERTIES IN TWO LEGUS GALAXIES COMPUTED WITH STOCHASTIC STELLAR POPULATION SYNTHESIS MODELS
  • 2015
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 812:2
  • Journal article (peer-reviewed)abstract
    • We investigate a novel Bayesian analysis method, based on the Stochastically Lighting Up Galaxies (slug) code, to derive the masses, ages, and extinctions of star clusters from integrated light photometry. Unlike many analysis methods, slug correctly accounts for incomplete initial mass function (IMF) sampling, and returns full posterior probability distributions rather than simply probability maxima. We apply our technique to 621 visually confirmed clusters in two nearby galaxies, NGC 628 and NGC 7793, that are part of the Legacy Extragalactic UV Survey (LEGUS). LEGUS provides Hubble Space Telescope photometry in the NUV, U, B, V, and I bands. We analyze the sensitivity of the derived cluster properties to choices of prior probability distribution, evolutionary tracks, IMF, metallicity, treatment of nebular emission, and extinction curve. We find that slug's results for individual clusters are insensitive to most of these choices, but that the posterior probability distributions we derive are often quite broad, and sometimes multi-peaked and quite sensitive to the choice of priors. In contrast, the properties of the cluster population as a whole are relatively robust against all of these choices. We also compare our results from slug to those derived with a conventional non-stochastic fitting code, Yggdrasil. We show that slug's stochastic models are generally a better fit to the observations than the deterministic ones used by Yggdrasil. However, the overall properties of the cluster populations recovered by both codes are qualitatively similar.
  •  
8.
  • Mantzouki, Evanthia, et al. (author)
  • Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins
  • 2018
  • In: Toxins. - : MDPI. - 2072-6651 .- 2072-6651. ; 10:4
  • Journal article (peer-reviewed)abstract
    • Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.
  •  
9.
  • Robberto, Massimo, et al. (author)
  • An HST Study of the Substellar Population of NGC 2024
  • 2024
  • In: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 960:1
  • Journal article (peer-reviewed)abstract
    • We performed an HST/WFC3-IR imaging survey of the young stellar cluster NGC 2024 in three filters probing the 1.4 mu m H2O absorption feature, characteristic of the population of low-mass and substellar-mass objects down to a few Jupiter masses. We detect 812 point sources, 550 of them in all three filters with signal-to-noise ratio greater than 5. Using a distance-independent two-color diagram, we determine extinction values as high as A V similar or equal to 40. We also find that the change of effective wavelengths in our filters results in higher A V values as the reddening increases. Reconstructing a dereddened color-magnitude diagram, we derive a luminosity histogram both for the full sample of candidate cluster members and for an extinction-limited subsample containing the 50% of sources with A V less than or similar to 15. Assuming a standard extinction law like Cardelli et al. with a nominal R V = 3.1, we produce a luminosity function in good agreement with the one resulting from a Salpeter-like initial mass function for a 1 Myr isochrone. There is some evidence of an excess of luminous stars in the most embedded region. We posit that the correlation may be due to those sources being younger, and therefore overluminous, than the more evolved and less extincted cluster's stars. We compare our classification scheme based on the depth of the 1.4 mu m photometric feature with the results from the spectroscopic survey of Levine et al., and we report a few peculiar sources and morphological features typical of the rich phenomenology commonly encountered in young star-forming regions.
  •  
10.
  • Robberto, Massimo, et al. (author)
  • HST Survey of the Orion Nebula Cluster in the H2O 1.4 μm Absorption Band. I. A Census of Substellar and Planetary-mass Objects
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 896:1
  • Journal article (peer-reviewed)abstract
    • In order to obtain a complete census of the stellar and substellar population, down to a few MJup in the ∼1 Myr old Orion Nebula Cluster, we used the infrared channel of the Wide Field Camera 3 of the Hubble Space Telescope with the F139M and F130N filters. These bandpasses correspond to the 1.4 μm H2O absorption feature and an adjacent line-free continuum region. Out of 4504 detected sources, 3352 (about 75%) appear fainter than m 130 = 14 (Vega mag) in the F130N filter, a brightness corresponding to the hydrogen-burning limit mass (M ≃ 0.072 M⊙) at ∼1 Myr. Of these, however, only 742 sources have a negative F130M-F139N color index, indicative of the presence of H2O vapor in absorption, and can therefore be classified as bona fide M and L dwarfs, with effective temperatures T ≲ 2850 K at an assumed 1 Myr cluster age. On our color-magnitude diagram (CMD), this population of sources with H2O absorption appears clearly distinct from the larger background population of highly reddened stars and galaxies with positive F130M-F139N color index and can be traced down to the sensitivity limit of our survey, m 130 ≃ 21.5, corresponding to a 1 Myr old ≃3 MJup planetary-mass object under about 2 mag of visual extinction. Theoretical models of the BT-Settl family predicting substellar isochrones of 1, 2, and 3 Myr down to ∼1 MJup fail to reproduce the observed H2O color index at M ≲ 20 MJup. We perform a Bayesian analysis to determine extinction, mass, and effective temperature of each substellar member of our sample, together with its membership probability.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view