SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Udd B) "

Sökning: WFRF:(Udd B)

  • Resultat 1-10 av 30
  • [1]23Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Palmio, Johanna, et al. (författare)
  • Hereditary myopathy with early respiratory failure: occurrence in various populations
  • 2014
  • Ingår i: Journal of Neurology, Neurosurgery and Psychiatry. - : BMJ Publishing Group. - 1468-330X. ; 85:3, s. 345-353
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective Several families with characteristic features of hereditary myopathy with early respiratory failure (HMERF) have remained without genetic cause. This international study was initiated to clarify epidemiology and the genetic underlying cause in these families, and to characterise the phenotype in our large cohort. Methods DNA samples of all currently known families with HMERF without molecular genetic cause were obtained from 12 families in seven different countries. Clinical, histopathological and muscle imaging data were collected and five biopsy samples made available for further immunohistochemical studies. Genotyping, exome sequencing and Sanger sequencing were used to identify and confirm sequence variations. Results All patients with clinical diagnosis of HMERF were genetically solved by five different titin mutations identified. One mutation has been reported while four are novel, all located exclusively in the FN3 119 domain (A150) of A-band titin. One of the new mutations showed semirecessive inheritance pattern with subclinical myopathy in the heterozygous parents. Typical clinical features were respiratory failure at mid-adulthood in an ambulant patient with very variable degree of muscle weakness. Cytoplasmic bodies were retrospectively observed in all muscle biopsy samples and these were reactive for myofibrillar proteins but not for titin. Conclusions We report an extensive collection of families with HMERF with five different mutations in exon 343 of TTN, which establishes this exon as the primary target for molecular diagnosis of HMERF. Our relatively large number of new families and mutations directly implies that HMERF is not extremely rare, not restricted to Northern Europe and should be considered in undetermined myogenic respiratory failure.
  •  
2.
  • Ávila-Polo, R., et al. (författare)
  • Loss of Sarcomeric Scaffolding as a Common Baseline Histopathologic Lesion in Titin-Related Myopathies
  • 2018
  • Ingår i: Journal of Neuropathology and Experimental Neurology. - 1554-6578. ; 77:12, s. 1101-1114
  • Tidskriftsartikel (refereegranskat)abstract
    • Titin-related myopathies are heterogeneous clinical conditions associated with mutations in TTN. To define their histopathologic boundaries and try to overcome the difficulty in assessing the pathogenic role of TTN variants, we performed a thorough morphological skeletal muscle analysis including light and electron microscopy in 23 patients with different clinical phenotypes presenting pathogenic autosomal dominant or autosomal recessive (AR) mutations located in different TTN domains. We identified a consistent pattern characterized by diverse defects in oxidative staining with prominent nuclear internalization in congenital phenotypes (AR-CM) (n = 10), ± necrotic/regenerative fibers, associated with endomysial fibrosis and rimmed vacuoles (RVs) in AR early-onset Emery-Dreifuss-like (AR-ED) (n = 4) and AR adult-onset distal myopathies (n = 4), and cytoplasmic bodies (CBs) as predominant finding in hereditary myopathy with early respiratory failure (HMERF) patients (n = 5). Ultrastructurally, the most significant abnormalities, particularly in AR-CM, were multiple narrow core lesions and/or clear small areas of disorganizations affecting one or a few sarcomeres with M-band and sometimes A-band disruption and loss of thick filaments. CBs were noted in some AR-CM and associated with RVs in HMERF and some AR-ED cases. As a whole, we described recognizable histopathological patterns and structural alterations that could point toward considering the pathogenicity of TTN mutations.
  •  
3.
  •  
4.
  • Ohlsson, Monica, et al. (författare)
  • Hereditary myopathy with early respiratory failure associated with a mutation in A-band titin
  • 2012
  • Ingår i: Brain. - : Oxford University Press (OUP): Policy B. - 0006-8950 .- 1460-2156. ; 135:6, s. 1682-1694
  • Tidskriftsartikel (refereegranskat)abstract
    • Hereditary myopathy with early respiratory failure and extensive myofibrillar lesions has been described in sporadic and familial cases and linked to various chromosomal regions. The mutated gene is unknown in most cases. We studied eight individuals, from three apparently unrelated families, with clinical and pathological features of hereditary myopathy with early respiratory failure. The investigations included clinical examination, muscle histopathology and genetic analysis by whole exome sequencing and single nucleotide polymorphism arrays. All patients had adult onset muscle weakness in the pelvic girdle, neck flexors, respiratory and trunk muscles, and the majority had prominent calf hypertrophy. Examination of pulmonary function showed decreased vital capacity. No signs of cardiac muscle involvement were found. Muscle histopathological features included marked muscle fibre size variation, fibre splitting, numerous internal nuclei and fatty infiltration. Frequent groups of fibres showed eosinophilic inclusions and deposits. At the ultrastructural level, there were extensive myofibrillar lesions with marked Z-disc alterations. Whole exome sequencing in four individuals from one family revealed a missense mutation, g.274375T > C; p.Cys30071Arg, in the titin gene (TTN). The mutation, which changes a highly conserved residue in the myosin binding A-band titin, was demonstrated to segregate with the disease in all three families. High density single nucleotide polymorphism arrays covering the entire genome demonstrated sharing of a 6.99 Mb haplotype, located in chromosome region 2q31 including TTN, indicating common ancestry. Our results demonstrate a novel and the first disease-causing mutation in A-band titin associated with hereditary myopathy with early respiratory failure. The typical histopathological features with prominent myofibrillar lesions and inclusions in muscle and respiratory failure early in the clinical course should be incentives for analysis of TTN mutations.
  •  
5.
  •  
6.
  • Hedberg, C., et al. (författare)
  • Hereditary myopathy with early respiratory failure associated with a mutation in A-band titin
  • 2012
  • Ingår i: Neuromuscular Disorders. - 0960-8966 .- 1873-2364. ; 22:9-10, s. 873-873
  • Tidskriftsartikel (övrigt vetenskapligt)abstract
    • Hereditary myopathy with early respiratory failure (HMERF) and extensive myofibrillar lesions have been described in sporadic and familial cases and linked to various chromosomal regions. We describe the clinical manifestations, muscle histopathology and genetics in eight individuals from three apparently unrelated families with clinical and pathological features of HMERF. All patients had muscle weakness in the pelvic girdle, neck flexors, respiratory and trunk muscles, and the majority had prominent calf hypertrophy. Examination of pulmonary function showed decreased vital capacity. No signs of cardiac muscle involvement were found. Muscle histopathological features included marked muscle fibre size variation, fibre splitting, numerous internal nuclei and fatty infiltration. Frequent groups of fibres showed eosinophilic inclusions and deposits. At the ultrastructural level there were extensive myofibrillar lesions with marked Z-disc alterations. Whole exome sequencing in four individuals from one family revealed a missense mutation, g.274375, T>C; p.Cys30071Arg, in the titin gene, TTN. The mutation, which changes a highly conserved residue in the myosin binding A-band titin, was demonstrated to segregate with the disease in all three families. High density single nucleotide polymorphism arrays covering the entire genome demonstrated sharing of a 699 Mb haplotype, located in chromosome region 2q31 including TTN, indicating common ancestry of this novel and first disease-causing mutation in A-band titin associated with HMERF.
  •  
7.
  •  
8.
  • Tajsharghi, Homa, 1968, et al. (författare)
  • Recessive myosin myopathy with external ophthalmoplegia associated with MYH2 mutations.
  • 2014
  • Ingår i: European journal of human genetics : EJHG. - : Nature Publishing Group. - 1476-5438 .- 1018-4813. ; 22
  • Tidskriftsartikel (refereegranskat)abstract
    • Myosin myopathies comprise a group of inherited diseases caused by mutations in myosin heavy chain (MyHC) genes. Homozygous or compound heterozygous truncating MYH2 mutations have been demonstrated to cause recessive myopathy with ophthalmoplegia, mild-to-moderate muscle weakness and complete lack of type 2A muscle fibers. In this study, we describe for the first time the clinical and morphological characteristics of recessive myosin IIa myopathy associated with MYH2 missense mutations. Seven patients of five different families with a myopathy characterized by ophthalmoplegia and mild-to-moderate muscle weakness were investigated. Muscle biopsy was performed to study morphological changes and MyHC isoform expression. Five of the patients were homozygous for MYH2 missense mutations, one patient was compound heterozygous for a missense and a nonsense mutation and one patient was homozygous for a frame-shift MYH2 mutation. Muscle biopsy demonstrated small or absent type 2A muscle fibers and reduced or absent expression of the corresponding MyHC IIa transcript and protein. We conclude that mild muscle weakness and ophthalmoplegia in combination with muscle biopsy demonstrating small or absent type 2A muscle fibers are the hallmark of recessive myopathy associated with MYH2 mutations.European Journal of Human Genetics advance online publication, 6 November 2013; doi:10.1038/ejhg.2013.250.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 30
  • [1]23Nästa

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy