SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Uddling Johan) ;lar1:(cth)"

Sökning: WFRF:(Uddling Johan) > Chalmers tekniska högskola

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kehoe, Laura, et al. (författare)
  • Make EU trade with Brazil sustainable
  • 2019
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 364:6438, s. 341-
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
2.
  • Buker, P., et al. (författare)
  • DO3SE modelling of soil moisture to determine ozone flux to forest trees
  • 2012
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 12:12, s. 5537-5562
  • Tidskriftsartikel (refereegranskat)abstract
    • The DO3SE (Deposition of O-3 for Stomatal Exchange) model is an established tool for estimating ozone (O-3) deposition, stomatal flux and impacts to a variety of vegetation types across Europe. It has been embedded within the EMEP (European Monitoring and Evaluation Programme) photochemical model to provide a policy tool capable of relating the flux-based risk of vegetation damage to O-3 precursor emission scenarios for use in policy formulation. A key limitation of regional flux-based risk assessments has been the assumption that soil water deficits are not limiting O-3 flux due to the unavailability of evaluated methods for modelling soil water deficits and their influence on stomatal conductance (g(sto)), and subsequent O-3 flux. This paper describes the development and evaluation of a method to estimate soil moisture status and its influence on g(sto) for a variety of forest tree species. This DO3SE soil moisture module uses the Penman-Monteith energy balance method to drive water cycling through the soil-plant-atmosphere system and empirical data describing g(sto) relationships with pre-dawn leaf water status to estimate the biological control of transpiration. We trial four different methods to estimate this biological control of the transpiration stream, which vary from simple methods that relate soil water content or potential directly to g(sto), to more complex methods that incorporate hydraulic resistance and plant capacitance that control water flow through the plant system. These methods are evaluated against field data describing a variety of soil water variables, g(sto) and transpiration data for Norway spruce (Picea abies), Scots pine (Pinus sylvestris), birch (Betula pendula), aspen (Populus tremuloides), beech (Fagus sylvatica) and holm oak (Quercus ilex) collected from ten sites across Europe and North America. Modelled estimates of these variables show consistency with observed data when applying the simple empirical methods, with the timing and magnitude of soil drying events being captured well across all sites and reductions in transpiration with the onset of drought being predicted with reasonable accuracy. The more complex methods, which incorporate hydraulic resistance and plant capacitance, perform less well, with predicted drying cycles consistently underestimating the rate and magnitude of water loss from the soil. A sensitivity analysis showed that model performance was strongly dependent upon the local parameterisation of key model drivers such as the maximum g(sto), soil texture, root depth and leaf area index. The results suggest that the simple modelling methods that relate g(sto) directly to soil water content and potential provide adequate estimates of soil moisture and influence on g(sto) such that they are suitable to be used to assess the potential risk posed by O-3 to forest trees across Europe.
  •  
3.
  • Karlsson, Per Erik, 1957, et al. (författare)
  • Negative impact of ozone on the stem basal area increment of mature Norway spruce in south Sweden
  • 2006
  • Ingår i: Forest Ecology and Management. - : Elsevier BV. - 0378-1127. ; 232:1-3, s. 146-151
  • Tidskriftsartikel (refereegranskat)abstract
    • The relative annual basal area increment of mature Norway spruce trees in south-central Sweden during 9 years was used as the response variable and analysed in relation to ozone exposure, meteorological conditions, soil moisture and stand characteristics. The method used was a modified multiple regression analysis, allowing for dependencies between observations from the same plots. The selected statistical model explained 91% of the variation in the annual relative basal area increment. The strongest explanatory variable was the stand basal area, followed by the temperature sum and the soil moisture index. After these three variables, the ozone index was the most important variable. Its effect was negative and highly significant. The average daylight ozone concentration gave a slightly better model fit as compared to the accumulated exposure during daylight hours above a threshold of 40 nmol mol−1 (AOT40). The predicted effect of ozone within the range of annual ozone exposures found in this study (18008700 nmol mol−1 h AOT40), was in absolute values a 0.8% decrease in the relative annual basal area increment. This could be compared with the mean relative annual increment measured during the study period of 4.6%. Our results provide statistical evidence that ground level ozone can have a negative impact on the stem growth of mature Norway spruce trees under field conditions.
  •  
4.
  • Mills, Gina, 1959, et al. (författare)
  • Closing the global ozone yield gap: Quantification and cobenefits for multistress tolerance
  • 2018
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 24:10, s. 4869-4893
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing both crop productivity and the tolerance of crops to abiotic and biotic stresses is a major challenge for global food security in our rapidly changing climate. For the first time, we show how the spatial variation and severity of tropospheric ozone effects on yield compare with effects of other stresses on a global scale, and discuss mitigating actions against the negative effects of ozone. We show that the sensitivity to ozone declines in the order soybean>wheat>maize>rice, with genotypic variation in response being most pronounced for soybean and rice. Based on stomatal uptake, we estimate that ozone (mean of 2010–2012) reduces global yield annually by 12.4%, 7.1%, 4.4% and 6.1% for soybean, wheat, rice and maize, respectively (the “ozone yield gaps”), adding up to 227Tg of lost yield. Our modelling shows that the highest ozone-induced production losses for soybean are in North and South America whilst for wheat they are in India and China, for rice in parts of India, Bangladesh, China and Indonesia, and for maize in China and the United States. Crucially, we also show that the same areas are often also at risk of high losses from pests and diseases, heat stress and to a lesser extent aridity and nutrient stress. In a solution-focussed analysis of these results, we provide a crop ideotype with tolerance of multiple stresses (including ozone) and describe how ozone effects could be included in crop breeding programmes. We also discuss altered crop management approaches that could be applied to reduce ozone impacts in the shorter term. Given the severity of ozone effects on staple food crops in areas of the world that are also challenged by other stresses, we recommend increased attention to the benefits that could be gained from addressing the ozone yield gap.
  •  
5.
  • Mills, Gina, 1959, et al. (författare)
  • Ozone pollution will compromise efforts to increase global wheat production
  • 2018
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 24:8, s. 3560-3574
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction of high-performing crop cultivars and crop/soil water management practices that increase the stomatal uptake of carbon dioxide and photosynthesis will be instrumental in realizing the United Nations Sustainable Development Goal (SDG) of achieving food security. To date, however, global assessments of how to increase crop yield have failed to consider the negative effects of tropospheric ozone, a gaseous pollutant that enters the leaf stomatal pores of plants along with carbon dioxide, and is increasing in concentration globally, particularly in rapidly developing countries. Earlier studies have simply estimated that the largest effects are in the areas with the highest ozone concentrations. Using a modelling method that accounts for the effects of soil moisture deficit and meteorological factors on the stomatal uptake of ozone, we show for the first time that ozone impacts on wheat yield are particularly large in humid rain-fed and irrigated areas of major wheat-producing countries (e.g. United States, France, India, China and Russia). Averaged over 2010-2012, we estimate that ozone reduces wheat yields by a mean 9.9% in the northern hemisphere and 6.2% in the southern hemisphere, corresponding to some 85 Tg (million tonnes) of lost grain. Total production losses in developing countries receiving Official Development Assistance are 50% higher than those in developed countries, potentially reducing the possibility of achieving UN SDG2. Crucially, our analysis shows that ozone could reduce the potential yield benefits of increasing irrigation usage in response to climate change because added irrigation increases the uptake and subsequent negative effects of the pollutant. We show that mitigation of air pollution in a changing climate could play a vital role in achieving the above-mentioned UN SDG, while also contributing to other SDGs related to human health and well-being, ecosystems and climate change.
  •  
6.
  • Simpson, David, 1961, et al. (författare)
  • Ozone - the persistent menace; interactions with the N cycle and climate change
  • 2014
  • Ingår i: Current Opinion in Environmental Sustainability. - : Elsevier BV. - 1877-3435. ; 9-10, s. 9-19
  • Tidskriftsartikel (refereegranskat)abstract
    • Tropospheric ozone is involved in a complex web of interactions with other atmospheric gases and particles, and through ecosystem interactions with the N-cycle and climate change. Ozone itself is a greenhouse gas, causing warming, and reductions in biomass and carbon sequestration caused by ozone provide a further indirect warming effect. Ozone also has cooling effects, however, for example, through impacts on aerosols and diffuse radiation. Ecosystems are both a source of ozone precursors (especially of hydrocarbons, but also nitrogen oxides), and a sink through deposition processes. The interactions with vegetation, atmospheric chemistry and aerosols are complex, and only partially understood. Levels and patterns of global exposure to ozone may change dramatically over the next 50 years, impacting global warming, air quality, global food production and ecosystem function.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6
Typ av publikation
tidskriftsartikel (6)
Typ av innehåll
refereegranskat (5)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Uddling, Johan, 1972 (6)
Simpson, David, 1961 (4)
Pleijel, Håkan, 1958 (2)
King, J. (1)
Rothhaupt, Karl-Otto (1)
Weigend, Maximilian (1)
visa fler...
Müller, Jörg (1)
Farrell, Katharine N ... (1)
Islar, Mine (1)
Krause, Torsten (1)
Alexanderson, Helena (1)
Schneider, Christoph (1)
Battiston, Roberto (1)
Paoletti, E. (1)
Peñuelas, J. (1)
Lukic, Marko (1)
Agrawal, M (1)
Pereira, Laura (1)
Riggi, Laura (1)
Cattaneo, Claudio (1)
Jung, Martin (1)
Andresen, Louise C. (1)
Kasimir, Åsa (1)
Arneth, Almut (1)
Wang-Erlandsson, Lan (1)
Jaramillo, Fernando (1)
Sutherland, William ... (1)
Boonstra, Wiebren J. (1)
Vajda, Vivi (1)
Alonso, R. (1)
Örlander, Göran (1)
Pascual, Unai (1)
Tscharntke, Teja (1)
Tuovinen, J. P. (1)
Brown, Calum (1)
Peterson, Gustaf (1)
Meyer, Carsten (1)
Seppelt, Ralf (1)
Johansson, Maria (1)
Martin, Jean Louis (1)
Olsson, Urban (1)
Hortal, Joaquin (1)
Buckley, Yvonne (1)
Petrovan, Silviu (1)
Schindler, Stefan (1)
Carvalho, Joana (1)
Amo, Luisa (1)
Machordom, Annie (1)
De Smedt, Pallieter (1)
Lindkvist, Emilie (1)
visa färre...
Lärosäte
Göteborgs universitet (5)
Lunds universitet (2)
Kungliga Tekniska Högskolan (1)
Stockholms universitet (1)
Mittuniversitetet (1)
visa fler...
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (6)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (5)
Samhällsvetenskap (2)
Teknik (1)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy