SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Uddling Johan) ;mspu:(conferencepaper)"

Sökning: WFRF:(Uddling Johan) > Konferensbidrag

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • af Ekenstam, Angelica, et al. (författare)
  • Leaf respiration rates are increased by warm season as well as by elevated temperature treatment in Eucalyptus globulus
  • 2014
  • Ingår i: EGU General Assembly 2014, held 27 April - 2 May, 2014 in Vienna, Austria.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Plant leaf respiration is one of the major CO2 fluxes between terrestrial biosphere and the atmosphere, and its responses to elevated CO2 and temperature thus have important implications for the carbon cycle and rate on ongoing climate change. Non-photorespiratory leaf respiration is reduced in light, Rlight, compared with the rate in the dark, Rdark. It is therefore important to consider both Rlight and Rdark when estimating the exchange of CO2 between the biosphere and the atmosphere, during current and future climates. This study was conducted at the Hawkesbury Forest Experiment, HFE, in Richmond, NSW, Australia. Trees of Tasmanian Blue Gum (Eucalyptus globulus Labill.) were exposed in whole tree chambers (WTC) to a complete factorial combination of ambient and elevated temperature and CO2 (+3 °C and +240 ppm CO2, respectively). The measurements of Rlight and Rdark were made in 2011 after 15 month exposure in the WTCs. The measurements were made in March (after the year’s hottest months) and October (after the coldest period). Rlight was determined at four temperatures ranging between 20 and 40 °C on attached leaves using a portable gas exchange system (LI-6400XT). Rdark was measured at 20-40 °C in October and at 25 °C in March. Rdark was measured after dark acclimation for at least 30 min and Rlight was determined from the intersection of the photosynthetic CO2 responses measured at three different light intensities using the Laisk metod. Trees grown in elevated temperature had a considerably higher Rdark (+53% across all measurement temperatures in October). However, Rlight did not respond significantly to either CO2 or temperature. In October, the Rlight to Rdark ratio indicated an overall light inhibition of respiration of 31% across all temperatures and in March the light inhibition was 22 % at 25 °C. The seasonal comparisons showed that both Rlight and Rdark were considerably higher after the warm compared to cold season, especially when measured at high temperature. These results points out the importance to account for Rlight as well as seasonal thermal respiratory acclimation when improving predictions of the carbon exchange between tree canopies and the atmosphere. If not taking light inhibition into account, leaf respiration is being overestimated and if not taking the seasonal acclimation into account the errors are potentially very large.
  •  
2.
  • Barth, Sabine, 1974, et al. (författare)
  • Water-Use-Efficiency of Forests Exposed to Elevated Carbon Dioxide and/or Elevated Tropospheric Ozone
  • 2009
  • Ingår i: 8th International Carbon Dioxide Conference, Jena Germany, 13-19 September 2009.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Effects of a 40-50% increase of ambient CO2 and O3, alone and in combination, on pure aspen and mixed aspen-birch forests were examined in the free air CO2-O3 enrichment experiment near Rhinelander, Wisconsin, USA (Aspen FACE). These atmospheric conditions represent the prediction for 2050. Trees exposed to elevated CO2 showed a significant increase in tree size, leave area index (LAI) and fine root production, while elevated O3 reduced tree size and LAI but not fine root biomass after 7 years of exposure (King et al. 2005). Measurements of sap flux and yearly stem wood production were made in 2004 and 2006, after >6 years of experimental treatments and after steady-state LAI had been reached. Water use efficiency (WUE) was determined as a function of yearly stem wood production and sap flux during the active growing seasons, between DOY 168-249.
  •  
3.
  • Buker, P, et al. (författare)
  • Comparison of different stomatal conductance algorithms for ozone flux modelling
  • 2005
  • Ingår i: UNECE – Workshop “Critical Levels of Ozone: Further applying and developing the flux-based concept”, Obergurgl, 15-19 November 2005.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Two widely used algorithms for modelling stomatal conductance (gs) were compared in order to evaluate the approach leading to the most realistic predictions of stomatal fluxes to vegetated surfaces: a multiplicative algorithm initially developed by Jarvis (1976) and refined by Emberson et al. (2000) (DO3SE ) and a photosynthesis-based Ball&Berry-type algorithm developed by Nikolov et al. (1995) (LEAFC3). Both models were parameterised for several crop and tree species (wheat, grapevine, Scots pine, beech and birch) and have been applied to various datasets – with the main focus on wheat - representing different European regions (North, Central and South Europe). A sensitivity analysis has been carried out for both models to evaluate the dependence of gs on the meteorological parameters temperature, photosynthetic active radiation and vapour pressure deficit. Furthermore, in order to test whether a general species-specific parameterisation can account for differences in gs due to plants growing under different climatic conditions throughout Europe, the models have been re-parameterised for local meteorological conditions. A direct comparison of both models showed that the net photosynthetic-based model required more detailed meteorological (e.g. ambient CO2-concentration, dew-point temperature) and plant-physiological (e.g. Vcmax and Jmax) input parameters while not delivering a substantially higher R2 when comparing measured and modelled gs. The relative weakness of the multiplicative model lies in its dependence on the maximum stomatal conductance (gmax), whereas the photosynthesis-based model is not taking into account phenology-related changes in gs. Furthermore, the results show that an equally close relationship between gs and net photosynthetic rate throughout the entire growing season is questionable. We conclude that the multiplicative approach is favourable for calculating stomatal fluxes on a wider scale (e.g. within EMEP-deposition model), whereas the photosynthesis-based approach is a potential alternative for modelling fluxes on a local scale.
  •  
4.
  • Carroll, M. A., et al. (författare)
  • Reactive nitrogen oxide fluxes to a mixed hardwood forest
  • 2008
  • Ingår i: International Geosphere-Biosphere Programme, Congress in May 2008.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Measurements of NOx (nitric oxide and nitrogen dioxide) mixing ratios and fluxes (20 May – 1 September) and NOy mixing ratios and fluxes (9 August – 1 September) were made at a northern mixed hardwood forest located at the University of Michigan Biological Station in northern Michigan, USA (45.5 deg N, 84.7 deg W, elevation 238 m) in 2005. During the 15-week period of NOx measurements, the site received flow from two dominant flow regimes: the north-northwest (ozone 20 – 40 ppbv) and the south-southwest (ozone 40 – 100 ppbv) approximately 26% and 27% of the time, respectively. Typical ambient NOx and NOy levels ranged from 0.5 – 2.4 ppbv and 0.5 to 3 ppbv, respectively. NO and NOy fluxes were found to be strongly diurnal with mid-day maximum downward fluxes of 0.5 – 2 and 1 – 2 μmole per square meter per hour, respectively, and nighttime fluxes at or near zero. In contrast, NO2 fluxes were small and upward during the morning, small and downward during the afternoon, and at or near zero at night. NOx fluxes were found to be essentially zero throughout the day and night. If all of the NOy deposition in this study were in the form of nitric acid, it would increase the available nutrient nitrate input to the forest by 8% over measured wet nitrate deposition.
  •  
5.
  • Dusenge, Mirindi Eric, 1986, et al. (författare)
  • Photosynthetic capacities of mature tropical forest trees in Rwanda are linked to successional group identity rather than to leaf nutrient content
  • 2014
  • Ingår i: EGU General Assembly 2014, held 27 April - 2 May, 2014 in Vienna, Austria.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Tropical forests are crucial in the global carbon balance, yet information required to estimate how much carbon that enter these ecosystems through photosynthesis is very limited, in particular for Africa and for tropical montane forests. In order to increases the knowledge of natural variability of photosynthetic capacities in tropical tree species in tropical Africa, measurements of leaf traits and gas exchange were conducted on sun and shade leaves of ten tree species growing in two tropical forests in Rwanda in central Africa. Seven species were studied in Ruhande Arboretum, a forest plantation at mid altitude (ca 1700 m), and six species in Nyungwe National Park, a cooler and higher altitude (at ca 2500 m) montane rainforest. Three species were common to both sites. At Nyungwe, three species each belonged to the successional groups pioneer and climax species. Climax species had considerably lower maximum rates of photosynthetic carboxylation (Vcmax) and electron transport (Jmax) than pioneer species. This difference was not related to leaf nutrient content, but rather seemed to be caused by differences in within-leaf N allocation between the two successional groups. With respect to N, leaves of climax species invested less N into photosynthetic enzymes (as judged by lower Vcmax and Jmax values) and more N into chlorophyll (as judged by higher SPAD values). Photosynthetic capacities, (i.e., Jmax and Vcmax), Jmax:Vcmax ratio and P content were significantly higher in Nyungwe than in Arboretum. Sun leaves had higher photosynthetic capacities and nutrient content than shade leaves. Across the entire dataset, variation in photosynthetic capacities among species was not related to leaf nutrient content, although significant relationships were found within individual species. This study contributes critical tropical data for global carbon models and suggests that, for montane rainforest trees of different functional types, successional group identity is a better predictor of photosynthetic capacities than leaf nutrient content.
  •  
6.
  • Dusenge, Mirindi Eric, 1986, et al. (författare)
  • Photosynthetic capacity of tropical montane tree species in relation to leaf nutrients, successional strategy and growth temperature
  • 2015
  • Ingår i: 2015 Canadian Society of Plant Biologist/Eastern Regional meeting; University of Toronto, St George Campus, November 21-22nd, 2015.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Photosynthetic capacity of tree leaves is typically positively related to nutrient content and little affected by changes in growth temperature. These relationships are, however, often poorly supported for tropical trees, for which interspecific differences may be more controlled by within-leaf nutrient allocation than by absolute leaf nutrient content, and little is known regarding photosynthetic acclimation to temperature. To explore the influence of leaf nutrient status, successional strategy and growth temperature on the photosynthetic capacity of tropical trees, we collected data on photosynthetic, chemical and morphological leaf traits of ten tree species in Rwanda. Seven species were studied in a forest plantation at mid-altitude, whereas six species were studied in a cooler montane rainforest at higher altitude. Three species were common to both sites, and, in the montane rainforest, three pioneer species and three climax species were investigated. Across species, interspecific variation in photosynthetic capacity was not related to leaf nutrient content. Instead, this variation was related to differences in within-leaf nitrogen allocation, with a tradeoff between investments into compounds related to photosynthetic capacity (higher in pioneer species) versus light-harvesting compounds (higher in climax species). Photosynthetic capacity was significantly lower at the warmer site. We conclude that (1) within-leaf nutrient allocation is more important than leaf nutrient content per se in controlling interspecific variation in photosynthetic capacity among tree species in tropical Rwanda, and that (2) tropical montane rainforest species exhibit decreased photosynthetic capacity when grown in a warmer environment.
  •  
7.
  •  
8.
  • Hasper, Thomas, et al. (författare)
  • Stomatal responses of Eucalyptus (Eucalyptus sp.) grown at different concentration of carbon dioxide (CO2) and temperature, Western Sydney, Australia
  • 2012
  • Ingår i: SEB Annual Main Meeting 2012, Salzburg 29 June - 2 July 2012.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Conclusions •Even with leaves in all treatments exhibited stomatal closure responses to increased [CO2], this response was significantly reduced in leaves growing in Ce treatments, showing that stomata of E. globulus do acclimate to growth in [CO2]. • The stomatal CO2 response of plants grown in Te did not differ from that in plants grown in Ta. • Te and/or Ce treatments did not have any effect on stomatal density/size or KL. • This study indicates that while stomatal CO2 responses has the potential to cause water savings under Ce, this potential is reduced by stomatal acclimation to prevailing growth [CO2] and is likely not present during conditions when gs is constrained by plant hydraulics.
  •  
9.
  • Hogg, A., et al. (författare)
  • Multi-year measurements of stomatal and non-stomatal fluxes
  • 2007
  • Ingår i: American Geophysical Union, Meeting in San Francisco, 10–14 December 2007.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Measurements of ozone, sensible heat, and latent heat fluxes, as well as relative humidity, temperature, pressure, wind speed, leaf area index, ambient ozone, and plant physiological parameters were made at a northern mixed hardwood forest located at the University of Michigan Biological Station (UMBS) in northern Michigan during the growing seasons 2002 through 2005. The ozone measurements were used to calculate total ozone flux and partitioning between stomatal and non-stomatal sinks. Total ozone flux varied diurnally with downward flux reaching -100 μmol m-2 h-1 at midday, at or near zero at night. Mean daytime canopy conductance varied over the four years: 0.39 mol m-2 s-1 (2002), 0.41 mol m-2 s-1 (2003), 0.52 mol m-2 s-1 (2004), and 0.43 mol m-2 s-1 (2005). Stomatal conductance showed expected patterns of behavior with respect to photosynthetic photon flux density (PPFD) and vapor pressure deficit (VPD). Estimated peak growing season stomatal ozone burden (flux) was 2.9 x105 nmol m-2 in 2002, 5.6 x105 nmol m-2 in 2003, 6.6 x105 nmol m-2 in 2004, and 4.1 x105 nmol m-2 in 2005. Non-stomatal conductance for ozone increased monotonically with increasing PPFD, and increased with temperature before falling off again at high temperature. Daytime non-stomatal ozone sinks were large and varied with time and environmental drivers. Daytime non-stomatal ozone conductance accounted for as much as 61% (2002), 31% (2003), 36% (2004), or 57% (2005) of canopy conductance, with the non-stomatal partition representing 4.2x105 nmol m-2 (2002), 2.0x105 nmol m-2 (2003), 3.5x105 nmol m-2 (2004), 3.5x105 nmol m-2 (2005) of the flux. Non-stomatal ozone conductance was strongly diurnal and a significant proportion of total canopy conductance.
  •  
10.
  • Johansson, Karin S L, et al. (författare)
  • Molecular basis of variation in stomatal responsiveness to elevated CO2
  • 2015
  • Ingår i: Agriculture and Climate Change - Adapting Crops to Increased Uncertainty. 15-17 February 2015, Amsterdam, the Netherlands. Procedia Environmental Sciences. - : Elsevier. - 1878-0296.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Stomata are small pores in the surface of plant leaves, balancing the uptake of CO2 against the loss of water vapour. As drought stress is projected to increase in many parts of the world, an improved understanding of how plants regulate their stomata in response to environmental stimuli may have important implications for securing food production in a future climate. The stomata of most plants respond to elevated CO2 concentration by partial closing, but the magnitude of this response shows a large variation among species and ecotypes. Plants that substantially decrease stomatal conductance under elevated CO2 reduce their water consumption and increase their water-use efficiency. However, the genetic basis for inter- and intraspecific variation in responsiveness is poorly understood, as are the mechanisms for sensing and responding to CO2. In the current study, we have measured the short-term stomatal response to elevated CO2 in a population of Arabidopsis thaliana recombinant inbred lines (RILs) originating from a cross between two parental genotypes showing a large difference in stomatal responsiveness. Hence, this RIL population showed a broad range in stomatal responsiveness, ranging from a 10% to a 60% reduction of stomatal conductance following an increase in CO2 concentration from 400 to 800 ppm. Using quantitative trait locus (QTL) mapping we have identified two genetic loci involved in the stomatal response to elevated CO2. Potential candidate genes regulating the stomatal response will be discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy