SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Uddling Johan) ;pers:(Ellsworth D.)"

Sökning: WFRF:(Uddling Johan) > Ellsworth D.

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Carroll, M. A., et al. (författare)
  • Reactive nitrogen oxide fluxes to a mixed hardwood forest
  • 2008
  • Ingår i: International Geosphere-Biosphere Programme, Congress in May 2008.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Measurements of NOx (nitric oxide and nitrogen dioxide) mixing ratios and fluxes (20 May – 1 September) and NOy mixing ratios and fluxes (9 August – 1 September) were made at a northern mixed hardwood forest located at the University of Michigan Biological Station in northern Michigan, USA (45.5 deg N, 84.7 deg W, elevation 238 m) in 2005. During the 15-week period of NOx measurements, the site received flow from two dominant flow regimes: the north-northwest (ozone 20 – 40 ppbv) and the south-southwest (ozone 40 – 100 ppbv) approximately 26% and 27% of the time, respectively. Typical ambient NOx and NOy levels ranged from 0.5 – 2.4 ppbv and 0.5 to 3 ppbv, respectively. NO and NOy fluxes were found to be strongly diurnal with mid-day maximum downward fluxes of 0.5 – 2 and 1 – 2 μmole per square meter per hour, respectively, and nighttime fluxes at or near zero. In contrast, NO2 fluxes were small and upward during the morning, small and downward during the afternoon, and at or near zero at night. NOx fluxes were found to be essentially zero throughout the day and night. If all of the NOy deposition in this study were in the form of nitric acid, it would increase the available nutrient nitrate input to the forest by 8% over measured wet nitrate deposition.
  •  
2.
  • De Kauwe, M. G., et al. (författare)
  • A test of the ‘one-point method’ for estimating maximum carboxylation capacity from field-measured, light-saturated photosynthesis
  • 2016
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 210:3, s. 1130-1144
  • Tidskriftsartikel (refereegranskat)abstract
    • Simulations of photosynthesis by terrestrial biosphere models typically need a specification of the maximum carboxylation rate (Vcmax). Estimating this parameter using A–Ci curves (net photosynthesis, A, vs intercellular CO2 concentration, Ci) is laborious, which limits availability of Vcmax data. However, many multispecies field datasets include net photosynthetic rate at saturating irradiance and at ambient atmospheric CO2 concentration (Asat) measurements, from which Vcmax can be extracted using a ‘one-point method’. We used a global dataset of A–Ci curves (564 species from 46 field sites, covering a range of plant functional types) to test the validity of an alternative approach to estimate Vcmax from Asat via this ‘one-point method’. If leaf respiration during the day (Rday) is known exactly, Vcmax can be estimated with an r2 value of 0.98 and a root-mean-squared error (RMSE) of 8.19 μmol m−2 s−1. However, Rday typically must be estimated. Estimating Rday as 1.5% of Vcmax, we found that Vcmax could be estimated with an r2 of 0.95 and an RMSE of 17.1 μmol m−2 s−1. The one-point method provides a robust means to expand current databases of field-measured Vcmax, giving new potential to improve vegetation models and quantify the environmental drivers of Vcmax variation.
  •  
3.
  • Ellsworth, D. S., et al. (författare)
  • Convergence in phosphorus constraints to photosynthesis in forests around the world
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Phosphorus (P) limitation is pervasive in tropical forests. Here the authors analyse the dependence of photosynthesis on leaf N and P in tropical forests, and show that incorporating leaf P constraints in a terrestrial biosphere model enhances its predictive power. Tropical forests take up more carbon (C) from the atmosphere per annum by photosynthesis than any other type of vegetation. Phosphorus (P) limitations to C uptake are paramount for tropical and subtropical forests around the globe. Yet the generality of photosynthesis-P relationships underlying these limitations are in question, and hence are not represented well in terrestrial biosphere models. Here we demonstrate the dependence of photosynthesis and underlying processes on both leaf N and P concentrations. The regulation of photosynthetic capacity by P was similar across four continents. Implementing P constraints in the ORCHIDEE-CNP model, gross photosynthesis was reduced by 36% across the tropics and subtropics relative to traditional N constraints and unlimiting leaf P. Our results provide a quantitative relationship for the P dependence for photosynthesis for the front-end of global terrestrial C models that is consistent with canopy leaf measurements.
  •  
4.
  • Ely, K. S., et al. (författare)
  • A reporting format for leaf-level gas exchange data and metadata
  • 2021
  • Ingår i: Ecological Informatics. - : Elsevier BV. - 1574-9541. ; 61
  • Tidskriftsartikel (refereegranskat)abstract
    • Leaf-level gas exchange data support the mechanistic understanding of plant fluxes of carbon and water. These fluxes inform our understanding of ecosystem function, are an important constraint on parameterization of terrestrial biosphere models, are necessary to understand the response of plants to global environmental change, and are integral to efforts to improve crop production. Collection of these data using gas analyzers can be both technically challenging and time consuming, and individual studies generally focus on a small range of species, restricted time periods, or limited geographic regions. The high value of these data is exemplified by the many publications that reuse and synthesize gas exchange data, however the lack of metadata and data reporting conventions make full and efficient use of these data difficult. Here we propose a reporting format for leaf-level gas exchange data and metadata to provide guidance to data contributors on how to store data in repositories to maximize their discoverability, facilitate their efficient reuse, and add value to individual datasets. For data users, the reporting format will better allow data repositories to optimize data search and extraction, and more readily integrate similar data into harmonized synthesis products. The reporting format specifies data table variable naming and unit conventions, as well as metadata characterizing experimental conditions and protocols. For common data types that were the focus of this initial version of the reporting format, i.e., survey measurements, dark respiration, carbon dioxide and light response curves, and parameters derived from those measurements, we took a further step of defining required additional data and metadata that would maximize the potential reuse of those data types. To aid data contributors and the development of data ingest tools by data repositories we provided a translation table comparing the outputs of common gas exchange instruments. Extensive consultation with data collectors, data users, instrument manufacturers, and data scientists was undertaken in order to ensure that the reporting format met community needs. The reporting format presented here is intended to form a foundation for future development that will incorporate additional data types and variables as gas exchange systems and measurement approaches advance in the future. The reporting format is published in the U.S. Department of Energy?s ESS-DIVE data repository, with documentation and future development efforts being maintained in a version control system.
  •  
5.
  • Gardner, A., et al. (författare)
  • Optimal stomatal theory predicts CO2 responses of stomatal conductance in both gymnosperm and angiosperm trees
  • 2022
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 237:4, s. 1229-41
  • Tidskriftsartikel (refereegranskat)abstract
    • Optimal stomatal theory predicts that stomata operate to maximise photosynthesis (A(net)) and minimise transpirational water loss to achieve optimal intrinsic water-use efficiency (iWUE). We tested whether this theory can predict stomatal responses to elevated atmospheric CO2 (eCO(2)), and whether it can capture differences in responsiveness among woody plant functional types (PFTs). We conducted a meta-analysis of tree studies of the effect of eCO(2) on iWUE and its components A(net) and stomatal conductance (g(s)). We compared three PFTs, using the unified stomatal optimisation (USO) model to account for confounding effects of leaf-air vapour pressure difference (D). We expected smaller g(s), but greater A(net), responses to eCO(2) in gymnosperms compared with angiosperm PFTs. We found that iWUE increased in proportion to increasing eCO(2) in all PFTs, and that increases in A(net) had stronger effects than reductions in g(s). The USO model correctly captured stomatal behaviour with eCO(2) across most datasets. The chief difference among PFTs was a lower stomatal slope parameter (g(1)) for the gymnosperm, compared with angiosperm, species. Land surface models can use the USO model to describe stomatal behaviour under changing atmospheric CO2 conditions.
  •  
6.
  • Hogg, A., et al. (författare)
  • Multi-year measurements of stomatal and non-stomatal fluxes
  • 2007
  • Ingår i: American Geophysical Union, Meeting in San Francisco, 10–14 December 2007.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Measurements of ozone, sensible heat, and latent heat fluxes, as well as relative humidity, temperature, pressure, wind speed, leaf area index, ambient ozone, and plant physiological parameters were made at a northern mixed hardwood forest located at the University of Michigan Biological Station (UMBS) in northern Michigan during the growing seasons 2002 through 2005. The ozone measurements were used to calculate total ozone flux and partitioning between stomatal and non-stomatal sinks. Total ozone flux varied diurnally with downward flux reaching -100 μmol m-2 h-1 at midday, at or near zero at night. Mean daytime canopy conductance varied over the four years: 0.39 mol m-2 s-1 (2002), 0.41 mol m-2 s-1 (2003), 0.52 mol m-2 s-1 (2004), and 0.43 mol m-2 s-1 (2005). Stomatal conductance showed expected patterns of behavior with respect to photosynthetic photon flux density (PPFD) and vapor pressure deficit (VPD). Estimated peak growing season stomatal ozone burden (flux) was 2.9 x105 nmol m-2 in 2002, 5.6 x105 nmol m-2 in 2003, 6.6 x105 nmol m-2 in 2004, and 4.1 x105 nmol m-2 in 2005. Non-stomatal conductance for ozone increased monotonically with increasing PPFD, and increased with temperature before falling off again at high temperature. Daytime non-stomatal ozone sinks were large and varied with time and environmental drivers. Daytime non-stomatal ozone conductance accounted for as much as 61% (2002), 31% (2003), 36% (2004), or 57% (2005) of canopy conductance, with the non-stomatal partition representing 4.2x105 nmol m-2 (2002), 2.0x105 nmol m-2 (2003), 3.5x105 nmol m-2 (2004), 3.5x105 nmol m-2 (2005) of the flux. Non-stomatal ozone conductance was strongly diurnal and a significant proportion of total canopy conductance.
  •  
7.
  • Hogg, A., et al. (författare)
  • Stomatal and non-stomatal fluxes of ozone to a northern mixed hardwood forest
  • 2007
  • Ingår i: Tellus Series B-Chemical and Physical Meteorology. - 0280-6509. ; 59:3, s. 514-525
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurements of ozone, sensible heat, and latent heat fluxes and plant physiological parameters were made at a northern mixed hardwood forest located at the University of Michigan Biological Station in northern Michigan from June 27 to September 28, 2002. These measurements were used to calculate total ozone flux and partitioning between stomatal and non-stomatal sinks. Total ozone flux varied diurnally with maximum values reaching 100 mu mol m(-2) h(-1) at midday and minimums at or near zero at night. Mean daytime canopy conductance was 0.5 mol m(-2) s(-1). During daytime, non-stomatal ozone conductance accounted for as much as 66% of canopy conductance, with the non-stomatal sink representing 63% of the ozone flux. Stomatal conductance showed expected patterns of behaviour with respect to photosynthetic photon flux density (PPFD) and vapour pressure defecit (VPD). Non-stomatal conductance for ozone increased monotonically with increasing PPFD, increased with temperature (T) before falling off again at high T, and behaved similarly for VPD. Day-time non-stomatal ozone sinks are large and vary with time and environmental drivers, particularly PPFD and T. This information is crucial to deriving mechanistic models that can simulate ozone uptake by different vegetation types.
  •  
8.
  • Uddling, Johan, 1972, et al. (författare)
  • Leaf and canopy conductance in aspen and aspen-birch forests under free-air enrichment of carbon dioxide and ozone
  • 2009
  • Ingår i: Tree Physiology. - : Oxford University Press (OUP). - 0829-318X .- 1758-4469. ; 29:11, s. 1367-1380
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing concentrations of atmospheric carbon dioxide (CO2) and tropospheric ozone (O-3) have the potential to affect tree physiology and structure, and hence forest feedbacks on climate. Here, we investigated how elevated concentrations of CO2 (+ 45%) and O-3 (+ 35%), alone and in combination, affected conductance for mass transfer at the leaf and canopy levels in pure aspen (Populus tremuloides Michx.) and in mixed aspen and birch (Betula papyrifera Marsh.) forests in the free-air CO2-O-3 enrichment experiment near Rhinelander, Wisconsin (Aspen FACE). The study was conducted during two growing seasons, when steady-state leaf area index (L) had been reached after > 6 years of exposure to CO2- and O-3-enrichment treatments. Canopy conductance (g(c)) was estimated from stand sap flux, while leaf-level conductance of sun leaves in the upper canopy was derived by three different and independent methods: sap flux and L in combination with vertical canopy modelling, leaf C-13 discrimination methodology in combination with photosynthesis modelling and leaf-level gas exchange. Regardless of the method used, the mean values of leaf-level conductance were higher in trees growing under elevated CO2 and/or O-3 than in trees growing in control plots, causing a CO2 x O-3 interaction that was statistically significant (P <= 0.10) for sap flux-and (for birch) C-13-derived leaf conductance. Canopy conductance was significantly increased by elevated CO2 but not significantly affected by elevated O-3. Investigation of a short-term gap in CO2 enrichment demonstrated a + 10% effect of transient exposure of elevated CO2-grown trees to ambient CO2 on g(c). All treatment effects were similar in pure aspen and mixed aspen-birch communities. These results demonstrate that short-term primary stomatal closure responses to elevated CO2 and O-3 were completely offset by long-term cumulative effects of these trace gases on tree and stand structure in determining canopy- and leaf-level conductance in pure aspen and mixed aspen-birch forests. Our results, together with the findings from other long-term FACE experiments with trees, suggest that model assumptions of large reductions in stomatal conductance under rising atmospheric CO2 are very uncertain for forests.
  •  
9.
  • Uddling, Johan, 1972, et al. (författare)
  • Sap flux in pure aspen and mixed aspen-birch forests exposed to elevated concentrations of carbon dioxide and ozone
  • 2008
  • Ingår i: Tree Physiology. - 0829-318X. ; 28:8, s. 1231-1243
  • Tidskriftsartikel (refereegranskat)abstract
    • Elevated concentrations of atmospheric carbon dioxide ([CO2]) and tropospheric ozone ([O-3]) have the potential to affect tree physiology and structure and hence forest water use, which has implications for climate feedbacks. We investigated how a 40% increase above ambient values in [CO2] and [O-3], alone and in combination, affect tree water use of pure aspen and mixed aspen-birch forests in the free air CO2-O-3 enrichment experiment near Rhinelander, Wisconsin (Aspen FACE). Measurements of sap flux and canopy leaf area index (L) were made during two growing seasons, when steady-state L had been reached after more than 6 years of exposure to elevated [CO2] and [O-3]. Maximum stand-level sap flux wits not significantly affected by levated [O-3], but was increased by 18% by elevated [CO2] averaged across years, communities and O-3 regimes. Treatment effects were similar in pure aspen and mixed aspen-birch communities. Increased tree water use in response to elevated [CO2] was related to positive CO2 treatment effects on tree size and L (+40%). Tree water use was not reduced by elevated [O-3] despite strong negative O-3 treatment effects on tree size and L (-22%). Elevated [O-3] predisposed pure aspen stands to drought-induced Sap flux reductions, whereas increased tree water use in response to elevated [CO2] did not result in lower soil water content in the upper soil or decreasing sap flux relative to control values during dry periods. Maintenance of soil water content in the upper soil in the elevated [CO2] treatment was at least partly a function of enhanced soil water-holding capacity, probably a result of increased organic matter content from increased litter inputs. Our findings that larger trees growing in elevated [CO2] used more water and that tree size, but not maximal water use, was negatively affected by elevated [O-3] suggest that the long-term cumulative effects on stand Structure may be more important than the expected primary stomatal Closure responses to elevated [CO2] and [O-3] in determining stand-level water use under possible future atmospheric conditions.
  •  
10.
  • Uddling, Johan, 1972, et al. (författare)
  • Stomatal O3 uptake of forest trees under rising atmospheric CO2 and tropospheric O3
  • 2008
  • Ingår i: Schaub M, Kaennel Dobbertin M, Steiner D (Eds) 2008. Air Pollution and Climate Change at Contrasting Altitude and Latitude. 23rd IUFRO Conference for Specialists in Air Pollution and Climate Change Effects on Forest Ecosystems. Murten, Switzerland, 7-12 Sept 2008. Abstracts. Birmensdorf, Swiss Federal Research Institute WSL. 162 pp..
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The rise in concentrations of atmospheric CO2 ([CO2]) and tropospheric O3 ([O3]) observed in recent decades and predicted for coming decades may portend large alterations in plant canopy function. Stomata respond to increased intercellular [CO2] by partially closing, and stomatal conductance (gs) was consistently reduced by both elevated [CO2] and elevated [O3] in shorter-term experiments with plants grown in controlled environments or field chambers. Based on these findings, combined stomatal-photosynthesis models, predicting decreased gs in response to increased [CO2], have been incorporated into the third generation of land surface models that are used in general circulation models. Such models have been employed to predict improved ecosystem hydrology, increased continental runoff and reduced stomatal uptake of O3 under rising atmospheric [CO2]. The Aspen FACE experiment in Rhinelander, Wisconsin USA, offers a unique opportunity to study fully acclimated long-term tree responses to elevated [CO2] and [O3], alone and in combination, under ecologically realistic conditions. Contrary to expectations, stand-level tree water-use of pure aspen and mixed aspen-birch communities was increased under elevated [CO2] and not significantly affected by [O3] treatment after canopy closure (Uddling et al. 2008). Here, we report on treatment effects on gs estimated by three independent methods: leaf-level gas exchange, sap flux in combination with within canopy scaling, and leaf tissue stable carbon isotope composition in combination with photosynthesis modelling. Regardless of method used, gs was always lowest in the control treatment (ambient [CO2] and ambient [O3]), but the only statistically significant treatment effect was that elevated [CO2] increased carbon isotope-derived gs. These results contrast with expectations as well as reports of reduced gs in an early phase of the experiment (Noormets et al. 2001), and suggest that long-term cumulative effects on stand structure and hydraulic efficiency may be more important than expected primary stomatal closure responses to elevated [CO2] and [O3] for determining gs under possible future atmospheric conditions. Results from FACE studies with trees are reviewed with respect to gs and tree water use and it is concluded that expectations and predictions of reduced O3 sensitivity of forests under rising [CO2] are unduly optimistic.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy