SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Uddling Johan) ;pers:(Emberson L.)"

Sökning: WFRF:(Uddling Johan) > Emberson L.

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Buker, P, et al. (författare)
  • Comparison of different stomatal conductance algorithms for ozone flux modelling
  • 2005
  • Ingår i: UNECE – Workshop “Critical Levels of Ozone: Further applying and developing the flux-based concept”, Obergurgl, 15-19 November 2005.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Two widely used algorithms for modelling stomatal conductance (gs) were compared in order to evaluate the approach leading to the most realistic predictions of stomatal fluxes to vegetated surfaces: a multiplicative algorithm initially developed by Jarvis (1976) and refined by Emberson et al. (2000) (DO3SE ) and a photosynthesis-based Ball&Berry-type algorithm developed by Nikolov et al. (1995) (LEAFC3). Both models were parameterised for several crop and tree species (wheat, grapevine, Scots pine, beech and birch) and have been applied to various datasets – with the main focus on wheat - representing different European regions (North, Central and South Europe). A sensitivity analysis has been carried out for both models to evaluate the dependence of gs on the meteorological parameters temperature, photosynthetic active radiation and vapour pressure deficit. Furthermore, in order to test whether a general species-specific parameterisation can account for differences in gs due to plants growing under different climatic conditions throughout Europe, the models have been re-parameterised for local meteorological conditions. A direct comparison of both models showed that the net photosynthetic-based model required more detailed meteorological (e.g. ambient CO2-concentration, dew-point temperature) and plant-physiological (e.g. Vcmax and Jmax) input parameters while not delivering a substantially higher R2 when comparing measured and modelled gs. The relative weakness of the multiplicative model lies in its dependence on the maximum stomatal conductance (gmax), whereas the photosynthesis-based model is not taking into account phenology-related changes in gs. Furthermore, the results show that an equally close relationship between gs and net photosynthetic rate throughout the entire growing season is questionable. We conclude that the multiplicative approach is favourable for calculating stomatal fluxes on a wider scale (e.g. within EMEP-deposition model), whereas the photosynthesis-based approach is a potential alternative for modelling fluxes on a local scale.
  •  
2.
  • Buker, P., et al. (författare)
  • DO3SE modelling of soil moisture to determine ozone flux to forest trees
  • 2012
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 12:12, s. 5537-5562
  • Tidskriftsartikel (refereegranskat)abstract
    • The DO3SE (Deposition of O-3 for Stomatal Exchange) model is an established tool for estimating ozone (O-3) deposition, stomatal flux and impacts to a variety of vegetation types across Europe. It has been embedded within the EMEP (European Monitoring and Evaluation Programme) photochemical model to provide a policy tool capable of relating the flux-based risk of vegetation damage to O-3 precursor emission scenarios for use in policy formulation. A key limitation of regional flux-based risk assessments has been the assumption that soil water deficits are not limiting O-3 flux due to the unavailability of evaluated methods for modelling soil water deficits and their influence on stomatal conductance (g(sto)), and subsequent O-3 flux. This paper describes the development and evaluation of a method to estimate soil moisture status and its influence on g(sto) for a variety of forest tree species. This DO3SE soil moisture module uses the Penman-Monteith energy balance method to drive water cycling through the soil-plant-atmosphere system and empirical data describing g(sto) relationships with pre-dawn leaf water status to estimate the biological control of transpiration. We trial four different methods to estimate this biological control of the transpiration stream, which vary from simple methods that relate soil water content or potential directly to g(sto), to more complex methods that incorporate hydraulic resistance and plant capacitance that control water flow through the plant system. These methods are evaluated against field data describing a variety of soil water variables, g(sto) and transpiration data for Norway spruce (Picea abies), Scots pine (Pinus sylvestris), birch (Betula pendula), aspen (Populus tremuloides), beech (Fagus sylvatica) and holm oak (Quercus ilex) collected from ten sites across Europe and North America. Modelled estimates of these variables show consistency with observed data when applying the simple empirical methods, with the timing and magnitude of soil drying events being captured well across all sites and reductions in transpiration with the onset of drought being predicted with reasonable accuracy. The more complex methods, which incorporate hydraulic resistance and plant capacitance, perform less well, with predicted drying cycles consistently underestimating the rate and magnitude of water loss from the soil. A sensitivity analysis showed that model performance was strongly dependent upon the local parameterisation of key model drivers such as the maximum g(sto), soil texture, root depth and leaf area index. The results suggest that the simple modelling methods that relate g(sto) directly to soil water content and potential provide adequate estimates of soil moisture and influence on g(sto) such that they are suitable to be used to assess the potential risk posed by O-3 to forest trees across Europe.
  •  
3.
  • Franz, M., et al. (författare)
  • Evaluation of simulated ozone effects in forest ecosystems against biomass damage estimates from fumigation experiments
  • 2018
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 15:22, s. 6941-6957
  • Tidskriftsartikel (refereegranskat)abstract
    • Regional estimates of the effects of ozone pollution on forest growth depend on the availability of reliable injury functions that estimate a representative ecosystem response to ozone exposure. A number of such injury functions for forest tree species and forest functional types have recently been published and subsequently applied in terrestrial biosphere models to estimate regional or global effects of ozone on forest tree productivity and carbon storage in the living plant biomass. The resulting impacts estimated by these biosphere models show large uncertainty in the magnitude of ozone effects predicted. To understand the role that these injury functions play in determining the variability in estimated ozone impacts, we use the O-CN biosphere model to provide a standardised modelling framework. We test four published injury functions describing the leaf-level, photosynthetic response to ozone exposure (targeting the maximum carboxylation capacity of Rubisco (V-cmax) or net pho-tosynthesis) in terms of their simulated whole-tree biomass responses against data from 23 ozone filtration/fumigation experiments conducted with young trees from European tree species at sites across Europe with a range of climatic conditions. Our results show that none of these previously published injury functions lead to simulated whole-tree biomass reductions in agreement with the observed dose-response relationships derived from these field experiments and instead lead to significant over-or underestimations of the ozone effect. By re-parameterising these photosynthetically based injury functions, we develop linear, plant-functional-typespecific dose-response relationships, which provide accurate simulations of the observed whole-tree biomass response across these 23 experiments.
  •  
4.
  • Karlsson, Per Erik, 1957, et al. (författare)
  • New critical levels for ozone effects on young trees based on AOT40 and simulated cumulative leaf uptake of ozone
  • 2004
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1352-2310. ; 38:15, s. 2283-2294
  • Tidskriftsartikel (refereegranskat)abstract
    • Leaf or needle ozone uptake was estimated for young trees at seven experimental sites across Europe using a stomatal conductance simulation model. Dose-response relationships based on cumulative leaf uptake of ozone (CUO) were calculated using different hourly ozone flux thresholds and these were compared to dose-response relationships based on daylight AOT40, which is currently used within the UNECE Convention on Long-Range Transboundary Air Pollution (CLRTAP). Regression analysis showed that the CUO-biomass response relationships were highly significant for both coniferous and broadleaf trees, and independent of which ozone flux threshold was applied. On the basis of this regressions analysis, an hourly flux threshold of 1.6 nmol m(-2) s(-1) (COO > 1.6) is proposed as the most appropriate for all species categories in deriving dose-response relationships. The analysis indicated that the current critical level for ozone impacts on European forests of AOT40 10 ppm h may not protect the most sensitive receptors and that critical levels for AOT40 and CUO > 1.6 of 5 ppm h and 4 mmol m(-2), respectively, are more appropriate. The research identified weaker dose-response relationships for the CUO exposure index compared with AOT40. Distinguishing between sensitive and less sensitive species substantially improved the CUO-biomass response relationships although, still, to a lesser extent than when exposure was expressed as AOT40. (C) 2004 Elsevier Ltd. All rights reserved.
  •  
5.
  • Karlsson, Per Erik, 1957, et al. (författare)
  • Risk assessments for forest trees: The performance of the ozone flux versus the AOT concepts
  • 2007
  • Ingår i: Environmental Pollution. - : Elsevier BV. - 0269-7491. ; 146:3, s. 608-616
  • Tidskriftsartikel (refereegranskat)abstract
    • Published ozone exposure-response relationships from experimental studies with young trees performed at different sites across Europe were re-analysed in order to test the performance of ozone exposure indices based on AOTX (Accumulated exposure Over a Threshold of X nmol mol(-1)) and AF(st)Y (Accumulated Stomatal Flux above a threshold of Y nmol m(-2) s(-1)). AF(st)1.6 was superior, as compared to AOT40, for explaining biomass reductions, when ozone sensitive species with differing leaf morphology were included in the analysis, while this was not the case for less sensitive species. A re-analysis of data with young black cherry trees, subject to different irrigation regimes, indicated that leaf visible injuries were more strongly related to the estimated stomatal ozone uptake, as compared to the ozone concentration in the air. Experimental data with different clones of silver birch indicated that leaf thickness was also an important factor influencing the development of ozone induced leaf visible injury. (c) 2006 Elsevier Ltd. All rights reserved.
  •  
6.
  • Mills, Gina, 1959, et al. (författare)
  • Ozone pollution will compromise efforts to increase global wheat production
  • 2018
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 24:8, s. 3560-3574
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction of high-performing crop cultivars and crop/soil water management practices that increase the stomatal uptake of carbon dioxide and photosynthesis will be instrumental in realizing the United Nations Sustainable Development Goal (SDG) of achieving food security. To date, however, global assessments of how to increase crop yield have failed to consider the negative effects of tropospheric ozone, a gaseous pollutant that enters the leaf stomatal pores of plants along with carbon dioxide, and is increasing in concentration globally, particularly in rapidly developing countries. Earlier studies have simply estimated that the largest effects are in the areas with the highest ozone concentrations. Using a modelling method that accounts for the effects of soil moisture deficit and meteorological factors on the stomatal uptake of ozone, we show for the first time that ozone impacts on wheat yield are particularly large in humid rain-fed and irrigated areas of major wheat-producing countries (e.g. United States, France, India, China and Russia). Averaged over 2010-2012, we estimate that ozone reduces wheat yields by a mean 9.9% in the northern hemisphere and 6.2% in the southern hemisphere, corresponding to some 85 Tg (million tonnes) of lost grain. Total production losses in developing countries receiving Official Development Assistance are 50% higher than those in developed countries, potentially reducing the possibility of achieving UN SDG2. Crucially, our analysis shows that ozone could reduce the potential yield benefits of increasing irrigation usage in response to climate change because added irrigation increases the uptake and subsequent negative effects of the pollutant. We show that mitigation of air pollution in a changing climate could play a vital role in achieving the above-mentioned UN SDG, while also contributing to other SDGs related to human health and well-being, ecosystems and climate change.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy