SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Uddling Johan) ;pers:(Gerosa G)"

Search: WFRF:(Uddling Johan) > Gerosa G

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Buker, P, et al. (author)
  • Comparison of different stomatal conductance algorithms for ozone flux modelling
  • 2005
  • In: UNECE – Workshop “Critical Levels of Ozone: Further applying and developing the flux-based concept”, Obergurgl, 15-19 November 2005.
  • Conference paper (other academic/artistic)abstract
    • Two widely used algorithms for modelling stomatal conductance (gs) were compared in order to evaluate the approach leading to the most realistic predictions of stomatal fluxes to vegetated surfaces: a multiplicative algorithm initially developed by Jarvis (1976) and refined by Emberson et al. (2000) (DO3SE ) and a photosynthesis-based Ball&Berry-type algorithm developed by Nikolov et al. (1995) (LEAFC3). Both models were parameterised for several crop and tree species (wheat, grapevine, Scots pine, beech and birch) and have been applied to various datasets – with the main focus on wheat - representing different European regions (North, Central and South Europe). A sensitivity analysis has been carried out for both models to evaluate the dependence of gs on the meteorological parameters temperature, photosynthetic active radiation and vapour pressure deficit. Furthermore, in order to test whether a general species-specific parameterisation can account for differences in gs due to plants growing under different climatic conditions throughout Europe, the models have been re-parameterised for local meteorological conditions. A direct comparison of both models showed that the net photosynthetic-based model required more detailed meteorological (e.g. ambient CO2-concentration, dew-point temperature) and plant-physiological (e.g. Vcmax and Jmax) input parameters while not delivering a substantially higher R2 when comparing measured and modelled gs. The relative weakness of the multiplicative model lies in its dependence on the maximum stomatal conductance (gmax), whereas the photosynthesis-based model is not taking into account phenology-related changes in gs. Furthermore, the results show that an equally close relationship between gs and net photosynthetic rate throughout the entire growing season is questionable. We conclude that the multiplicative approach is favourable for calculating stomatal fluxes on a wider scale (e.g. within EMEP-deposition model), whereas the photosynthesis-based approach is a potential alternative for modelling fluxes on a local scale.
  •  
2.
  • Büker, P, et al. (author)
  • New flux based doseeresponse relationships for ozone for European forest tree species
  • 2015
  • In: Environmental Pollution. - : Elsevier BV. - 0269-7491. ; 206, s. 163-174
  • Journal article (peer-reviewed)abstract
    • To derive O3 doseeresponse relationships (DRR) for five European forest trees species and broadleaf deciduous and needleleaf tree plant functional types (PFTs), phytotoxic O3 doses (PODy) were related to biomass reductions. PODy was calculated using a stomatal flux model with a range of cut-off thresholds (y) indicative of varying detoxification capacities. Linear regression analysis showed that DRR for PFT and individual tree species differed in their robustness. A simplified parameterisation of the flux model was tested and showed that for most non-Mediterranean tree species, this simplified model led to similarly robust DRR as compared to a species- and climate region-specific parameterisation. Experimentally induced soil water stress was not found to substantially reduce PODy, mainly due to the short duration of soil water stress periods. This study validates the stomatal O3 flux concept and represents a step forward in predicting O3 damage to forests in a spatially and temporally varying climate.
  •  
3.
  • Franz, M., et al. (author)
  • Evaluation of simulated ozone effects in forest ecosystems against biomass damage estimates from fumigation experiments
  • 2018
  • In: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 15:22, s. 6941-6957
  • Journal article (peer-reviewed)abstract
    • Regional estimates of the effects of ozone pollution on forest growth depend on the availability of reliable injury functions that estimate a representative ecosystem response to ozone exposure. A number of such injury functions for forest tree species and forest functional types have recently been published and subsequently applied in terrestrial biosphere models to estimate regional or global effects of ozone on forest tree productivity and carbon storage in the living plant biomass. The resulting impacts estimated by these biosphere models show large uncertainty in the magnitude of ozone effects predicted. To understand the role that these injury functions play in determining the variability in estimated ozone impacts, we use the O-CN biosphere model to provide a standardised modelling framework. We test four published injury functions describing the leaf-level, photosynthetic response to ozone exposure (targeting the maximum carboxylation capacity of Rubisco (V-cmax) or net pho-tosynthesis) in terms of their simulated whole-tree biomass responses against data from 23 ozone filtration/fumigation experiments conducted with young trees from European tree species at sites across Europe with a range of climatic conditions. Our results show that none of these previously published injury functions lead to simulated whole-tree biomass reductions in agreement with the observed dose-response relationships derived from these field experiments and instead lead to significant over-or underestimations of the ozone effect. By re-parameterising these photosynthetically based injury functions, we develop linear, plant-functional-typespecific dose-response relationships, which provide accurate simulations of the observed whole-tree biomass response across these 23 experiments.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view