SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Uddling Johan) ;pers:(Niyonzima Felix)"

Sökning: WFRF:(Uddling Johan) > Niyonzima Felix

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dusenge, Mirindi Eric, 1986, et al. (författare)
  • Photosynthetic capacities of mature tropical forest trees in Rwanda are linked to successional group identity rather than to leaf nutrient content
  • 2014
  • Ingår i: EGU General Assembly 2014, held 27 April - 2 May, 2014 in Vienna, Austria.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Tropical forests are crucial in the global carbon balance, yet information required to estimate how much carbon that enter these ecosystems through photosynthesis is very limited, in particular for Africa and for tropical montane forests. In order to increases the knowledge of natural variability of photosynthetic capacities in tropical tree species in tropical Africa, measurements of leaf traits and gas exchange were conducted on sun and shade leaves of ten tree species growing in two tropical forests in Rwanda in central Africa. Seven species were studied in Ruhande Arboretum, a forest plantation at mid altitude (ca 1700 m), and six species in Nyungwe National Park, a cooler and higher altitude (at ca 2500 m) montane rainforest. Three species were common to both sites. At Nyungwe, three species each belonged to the successional groups pioneer and climax species. Climax species had considerably lower maximum rates of photosynthetic carboxylation (Vcmax) and electron transport (Jmax) than pioneer species. This difference was not related to leaf nutrient content, but rather seemed to be caused by differences in within-leaf N allocation between the two successional groups. With respect to N, leaves of climax species invested less N into photosynthetic enzymes (as judged by lower Vcmax and Jmax values) and more N into chlorophyll (as judged by higher SPAD values). Photosynthetic capacities, (i.e., Jmax and Vcmax), Jmax:Vcmax ratio and P content were significantly higher in Nyungwe than in Arboretum. Sun leaves had higher photosynthetic capacities and nutrient content than shade leaves. Across the entire dataset, variation in photosynthetic capacities among species was not related to leaf nutrient content, although significant relationships were found within individual species. This study contributes critical tropical data for global carbon models and suggests that, for montane rainforest trees of different functional types, successional group identity is a better predictor of photosynthetic capacities than leaf nutrient content.
  •  
2.
  • Dusenge, Mirindi Eric, 1986, et al. (författare)
  • Photosynthetic capacity of tropical montane tree species in relation to leaf nutrients, successional strategy and growth temperature
  • 2015
  • Ingår i: Oecologia. - : Springer Science and Business Media LLC. - 0029-8549 .- 1432-1939. ; 177:4, s. 1183-1194
  • Tidskriftsartikel (refereegranskat)abstract
    • Photosynthetic capacity of tree leaves is typically positively related to nutrient content and little affected by changes in growth temperature. These relationships are, however, often poorly supported for tropical trees, for which interspecific differences may be more strongly controlled by within-leaf nutrient allocation than by absolute leaf nutrient content, and little is known regarding photosynthetic acclimation to temperature. To explore the influence of leaf nutrient status, successional strategy and growth temperature on the photosynthetic capacity of tropical trees, we collected data on photosynthetic, chemical and morphological leaf traits of ten tree species in Rwanda. Seven species were studied in a forest plantation at mid-altitude (~1,700 m), whereas six species were studied in a cooler montane rainforest at higher altitude (~2,500 m). Three species were common to both sites, and, in the montane rainforest, three pioneer species and three climax species were investigated. Across species, interspecific variation in photosynthetic capacity was not related to leaf nutrient content. Instead, this variation was related to differences in within-leaf nitrogen allocation, with a tradeoff between investments into compounds related to photosynthetic capacity (higher in pioneer species) versus light-harvesting compounds (higher in climax species). Photosynthetic capacity was significantly lower at the warmer site at 1,700 m altitude. We conclude that (1) within-leaf nutrient allocation is more important than leaf nutrient content per se in controlling interspecific variation in photosynthetic capacity among tree species in tropical Rwanda, and that (2) tropical montane rainforest species exhibit decreased photosynthetic capacity when grown in a warmer environment.
  •  
3.
  • Dusenge, Mirindi Eric, 1986, et al. (författare)
  • Photosynthetic capacity of tropical montane tree species in relation to leaf nutrients, successional strategy and growth temperature
  • 2015
  • Ingår i: 2015 Canadian Society of Plant Biologist/Eastern Regional meeting; University of Toronto, St George Campus, November 21-22nd, 2015.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Photosynthetic capacity of tree leaves is typically positively related to nutrient content and little affected by changes in growth temperature. These relationships are, however, often poorly supported for tropical trees, for which interspecific differences may be more controlled by within-leaf nutrient allocation than by absolute leaf nutrient content, and little is known regarding photosynthetic acclimation to temperature. To explore the influence of leaf nutrient status, successional strategy and growth temperature on the photosynthetic capacity of tropical trees, we collected data on photosynthetic, chemical and morphological leaf traits of ten tree species in Rwanda. Seven species were studied in a forest plantation at mid-altitude, whereas six species were studied in a cooler montane rainforest at higher altitude. Three species were common to both sites, and, in the montane rainforest, three pioneer species and three climax species were investigated. Across species, interspecific variation in photosynthetic capacity was not related to leaf nutrient content. Instead, this variation was related to differences in within-leaf nitrogen allocation, with a tradeoff between investments into compounds related to photosynthetic capacity (higher in pioneer species) versus light-harvesting compounds (higher in climax species). Photosynthetic capacity was significantly lower at the warmer site. We conclude that (1) within-leaf nutrient allocation is more important than leaf nutrient content per se in controlling interspecific variation in photosynthetic capacity among tree species in tropical Rwanda, and that (2) tropical montane rainforest species exhibit decreased photosynthetic capacity when grown in a warmer environment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy