SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Uddling Johan) ;pers:(Nsabimana Donat)"

Sökning: WFRF:(Uddling Johan) > Nsabimana Donat

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dusenge, Mirindi Eric, 1986, et al. (författare)
  • Limited thermal acclimation of photosynthesis in tropical montane tree species
  • 2021
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 27:19, s. 4860-4878
  • Tidskriftsartikel (refereegranskat)abstract
    • The temperature sensitivity of physiological processes and growth of tropical trees remains a key uncertainty in predicting how tropical forests will adjust to future climates. In particular, our knowledge regarding warming responses of photosynthesis, and its underlying biochemical mechanisms, is very limited. We grew seedlings of two tropical montane rainforest tree species, the early-successional species Harungana montana and the late-successional species Syzygium guineense, at three different sites along an elevation gradient, differing by 6.8℃ in daytime ambient air temperature. Their physiological and growth performance was investigated at each site. The optimum temperature of net photosynthesis (ToptA) did not significantly increase in warm-grown trees in either species. Similarly, the thermal optima (ToptV and ToptJ) and activation energies (EaV and EaJ) of maximum Rubisco carboxylation capacity (Vcmax) and maximum electron transport rate (Jmax) were largely unaffected by warming. However, Vcmax, Jmax and foliar dark respiration (Rd) at 25℃ were significantly reduced by warming in both species, and this decline was partly associated with concomitant reduction in total leaf nitrogen content. The ratio of Jmax/Vcmax decreased with increasing leaf temperature for both species, but the ratio at 25℃ was constant across sites. Furthermore, in H. montana, stomatal conductance at 25℃ remained constant across the different temperature treatments, while in S. guineense it increased with warming. Total dry biomass increased with warming in H. montana but remained constant in S. guineense. The biomass allocated to roots, stem and leaves was not affected by warming in H. montana, whereas the biomass allocated to roots significantly increased in S. guineense. Overall, our findings show that in these two tropical montane rainforest tree species, the capacity to acclimate the thermal optimum of photosynthesis is limited while warming-induced reductions in respiration and photosynthetic capacity rates are tightly coupled and linked to responses of leaf nitrogen.
  •  
2.
  • Dusenge, Mirindi Eric, 1986, et al. (författare)
  • Photosynthetic capacities of mature tropical forest trees in Rwanda are linked to successional group identity rather than to leaf nutrient content
  • 2014
  • Ingår i: EGU General Assembly 2014, held 27 April - 2 May, 2014 in Vienna, Austria.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Tropical forests are crucial in the global carbon balance, yet information required to estimate how much carbon that enter these ecosystems through photosynthesis is very limited, in particular for Africa and for tropical montane forests. In order to increases the knowledge of natural variability of photosynthetic capacities in tropical tree species in tropical Africa, measurements of leaf traits and gas exchange were conducted on sun and shade leaves of ten tree species growing in two tropical forests in Rwanda in central Africa. Seven species were studied in Ruhande Arboretum, a forest plantation at mid altitude (ca 1700 m), and six species in Nyungwe National Park, a cooler and higher altitude (at ca 2500 m) montane rainforest. Three species were common to both sites. At Nyungwe, three species each belonged to the successional groups pioneer and climax species. Climax species had considerably lower maximum rates of photosynthetic carboxylation (Vcmax) and electron transport (Jmax) than pioneer species. This difference was not related to leaf nutrient content, but rather seemed to be caused by differences in within-leaf N allocation between the two successional groups. With respect to N, leaves of climax species invested less N into photosynthetic enzymes (as judged by lower Vcmax and Jmax values) and more N into chlorophyll (as judged by higher SPAD values). Photosynthetic capacities, (i.e., Jmax and Vcmax), Jmax:Vcmax ratio and P content were significantly higher in Nyungwe than in Arboretum. Sun leaves had higher photosynthetic capacities and nutrient content than shade leaves. Across the entire dataset, variation in photosynthetic capacities among species was not related to leaf nutrient content, although significant relationships were found within individual species. This study contributes critical tropical data for global carbon models and suggests that, for montane rainforest trees of different functional types, successional group identity is a better predictor of photosynthetic capacities than leaf nutrient content.
  •  
3.
  • Dusenge, Mirindi Eric, 1986, et al. (författare)
  • Photosynthetic capacity of tropical montane tree species in relation to leaf nutrients, successional strategy and growth temperature
  • 2015
  • Ingår i: Oecologia. - : Springer Science and Business Media LLC. - 0029-8549 .- 1432-1939. ; 177:4, s. 1183-1194
  • Tidskriftsartikel (refereegranskat)abstract
    • Photosynthetic capacity of tree leaves is typically positively related to nutrient content and little affected by changes in growth temperature. These relationships are, however, often poorly supported for tropical trees, for which interspecific differences may be more strongly controlled by within-leaf nutrient allocation than by absolute leaf nutrient content, and little is known regarding photosynthetic acclimation to temperature. To explore the influence of leaf nutrient status, successional strategy and growth temperature on the photosynthetic capacity of tropical trees, we collected data on photosynthetic, chemical and morphological leaf traits of ten tree species in Rwanda. Seven species were studied in a forest plantation at mid-altitude (~1,700 m), whereas six species were studied in a cooler montane rainforest at higher altitude (~2,500 m). Three species were common to both sites, and, in the montane rainforest, three pioneer species and three climax species were investigated. Across species, interspecific variation in photosynthetic capacity was not related to leaf nutrient content. Instead, this variation was related to differences in within-leaf nitrogen allocation, with a tradeoff between investments into compounds related to photosynthetic capacity (higher in pioneer species) versus light-harvesting compounds (higher in climax species). Photosynthetic capacity was significantly lower at the warmer site at 1,700 m altitude. We conclude that (1) within-leaf nutrient allocation is more important than leaf nutrient content per se in controlling interspecific variation in photosynthetic capacity among tree species in tropical Rwanda, and that (2) tropical montane rainforest species exhibit decreased photosynthetic capacity when grown in a warmer environment.
  •  
4.
  • Dusenge, Mirindi Eric, 1986, et al. (författare)
  • Photosynthetic capacity of tropical montane tree species in relation to leaf nutrients, successional strategy and growth temperature
  • 2015
  • Ingår i: 2015 Canadian Society of Plant Biologist/Eastern Regional meeting; University of Toronto, St George Campus, November 21-22nd, 2015.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Photosynthetic capacity of tree leaves is typically positively related to nutrient content and little affected by changes in growth temperature. These relationships are, however, often poorly supported for tropical trees, for which interspecific differences may be more controlled by within-leaf nutrient allocation than by absolute leaf nutrient content, and little is known regarding photosynthetic acclimation to temperature. To explore the influence of leaf nutrient status, successional strategy and growth temperature on the photosynthetic capacity of tropical trees, we collected data on photosynthetic, chemical and morphological leaf traits of ten tree species in Rwanda. Seven species were studied in a forest plantation at mid-altitude, whereas six species were studied in a cooler montane rainforest at higher altitude. Three species were common to both sites, and, in the montane rainforest, three pioneer species and three climax species were investigated. Across species, interspecific variation in photosynthetic capacity was not related to leaf nutrient content. Instead, this variation was related to differences in within-leaf nitrogen allocation, with a tradeoff between investments into compounds related to photosynthetic capacity (higher in pioneer species) versus light-harvesting compounds (higher in climax species). Photosynthetic capacity was significantly lower at the warmer site. We conclude that (1) within-leaf nutrient allocation is more important than leaf nutrient content per se in controlling interspecific variation in photosynthetic capacity among tree species in tropical Rwanda, and that (2) tropical montane rainforest species exhibit decreased photosynthetic capacity when grown in a warmer environment.
  •  
5.
  • Manzi, Olivier Jean Leonce, 1993, et al. (författare)
  • Canopy temperatures strongly overestimate leaf thermal safety margins of tropical trees
  • 2024
  • Ingår i: New Phytologist. - 0028-646X .- 1469-8137. ; 243:6, s. 2115-2129
  • Tidskriftsartikel (refereegranskat)abstract
    • Current estimates of temperature effects on plants mostly rely on air temperature, although it can significantly deviate from leaf temperature (Tleaf). To address this, some studies have used canopy temperature (Tcan). However, Tcan fails to capture the fine-scale variation in Tleaf among leaves and species in diverse canopies. We used infrared radiometers to study Tleaf and Tcan and how they deviate from air temperature (ΔTleaf and ΔTcan) in multispecies tropical tree plantations at three sites along an elevation and temperature gradient in Rwanda. Our results showed high Tleaf (up to c. 50°C) and ΔTleaf (on average 8–10°C and up to c.20°C) of sun-exposed leaves during 10:00 h–15:00 h, being close to or exceeding photosynthetic heat tolerance thresholds. These values greatly exceeded simultaneously measured values of Tcan and ΔTcan, respectively, leading to strongly overestimated leaf thermal safety margins if basing those on Tcan data. Stomatal conductance and leaf size affected Tleaf and Tcan in line with their expected influences on leaf energy balance. Our findings highlight the importance of leaf traits for leaf thermoregulation and show that monitoring Tcan is not enough to capture the peak temperatures and heat stress experienced by individual leaves of different species in tropical forest canopies.
  •  
6.
  • Mujawamariya, Myriam, et al. (författare)
  • Complete or overcompensatory thermal acclimation of leaf dark respiration in African tropical trees
  • 2021
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 229:5, s. 2548-61
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2020 The Authors New Phytologist © 2020 New Phytologist Foundation Tropical climates are getting warmer, with pronounced dry periods in large areas. The productivity and climate feedbacks of future tropical forests depend on the ability of trees to acclimate their physiological processes, such as leaf dark respiration (Rd), to these new conditions. However, knowledge on this is currently limited due to data scarcity. We studied the impact of growth temperature on Rd and its dependency on net photosynthesis (An), leaf nitrogen (N) and phosphorus (P) contents, and leaf mass per unit area (LMA) in 16 early-successional (ES) and late-successional (LS) tropical tree species in multispecies plantations along an elevation gradient (Rwanda TREE project). Moreover, we explored the effect of drought on Rd in one ES and one LS species. Leaf Rd at 20°C decreased at warmer sites, regardless if it was expressed per unit leaf area, mass, N or P. This acclimation resulted in an 8% and a 28% decrease in Rd at prevailing nighttime temperatures in trees at the intermediate and warmest sites, respectively. Moreover, drought reduced Rd, particularly in the ES species and at the coolest site. Thermal acclimation of Rd is complete or overcompensatory and independent of changes in leaf nutrients or LMA in African tropical trees.
  •  
7.
  • Ntirugulirwa, Bonaventure, et al. (författare)
  • Thermophilisation of Afromontane forest stands demonstrated in an elevation gradient experiment
  • 2023
  • Ingår i: Biogeosciences. - 1810-6277. ; 20:24, s. 5125-5149
  • Tidskriftsartikel (refereegranskat)abstract
    • The response of tropical trees and tree communities to climate change is crucial for the carbon storage and biodiversity of the terrestrial biosphere. Trees in tropical montane rain forests (TMFs) are considered particularly vulnerable to climate change, but this hypothesis remains poorly evaluated due to data scarcity. To reduce the knowledge gap in the response of TMF trees to warming, we established a field experiment along a 1300–2400m elevation gradient as a proxy for warming in Rwanda. Seedling-size trees of 20 species native to montane forests in eastern and central Africa were planted in multi-species plots at three sites along the gradient. They have overlapping distributions but primarily occur in either transitional rain forests (∼1600–2000 m a. s. l.) or mid-elevation TMFs (∼2000–3000 m a. s. l.), with both early- (ES) and late-successional (LS) species represented in each elevation origin group. Tree growth (diameter and height) and survival were monitored regularly over 2 years. We found that ES species, especially from lower elevations, grew faster at warmer sites, while several of the LS species, especially from higher elevations, did not respond or grew slower. Moreover, a warmer climate increased tree mortality in LS species, but not much in ES species. ES species with transitional rain forest origin strongly increased proportional to stand basal area at warmer sites, while TMF species declined, suggesting that lower-elevation ES species will have an advantage over higher-elevation species in a warming climate. The risk of higher-elevation and LS species of becoming outcompeted by lower-elevation and ES species due to a thermophilisation response in a warmer climate has important implications for biodiversity and carbon storage of Afromontane forests.
  •  
8.
  • Nyirambangutse, Brigitte, 1982, et al. (författare)
  • Carbon stocks and dynamics at different successional stages in an Afromontane tropical forest
  • 2017
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 14, s. 1285-1303
  • Tidskriftsartikel (refereegranskat)abstract
    • As a result of different types of disturbance, forests are a mixture of stands at different stages of ecological succession. Successional stage is likely to influence forest productivity and carbon storage, linking the degree of forest disturbance to the global carbon cycle and climate. Although tropical montane forests are an important part of tropical forest ecosystems (ca. 8%, elevation > 1000ma.s.l.), there are still significant knowledge gaps regarding the carbon dynamics and stocks of these forests, and how these differ between early (ES) and late successional (LS) stages. This study examines the carbon (C) stock, relative growth rate (RGR) and net primary production (NPP) of ES and LS forest stands in an Afromontane tropical rainforest using data from inventories of quantitatively important ecosystem compartments in fifteen 0.5ha plots in Nyungwe National Park in Rwanda. The total C stock was 35% larger in LS compared to ES plots due to significantly larger above-ground biomass (AGB; 185 and 76MgCh-1 in LS and ES plots), while the soil and root C stock (down to 45cm depth in the mineral soil) did not significantly differ between the two successional stages (178 and 204MgCh-1 in LS and ES plots). The main reasons for the difference in AGB were that ES trees had significantly lower stature and wood density compared to LS trees. However, ES and LS stands had similar total NPP (canopy, wood and roots of all plots ĝ1/4 9.4MgCh-1) due to counterbalancing effects of differences in AGB (higher in LS stands) and RGR (higher in ES stands). The AGB in the LS plots was considerably higher than the average value reported for old-growth tropical montane forest of south-east Asia and Central and South America at similar elevations and temperatures, and of the same magnitude as in tropical lowland forest of these regions. The results of this study highlight the importance of accounting for disturbance regimes and differences in wood density and allometry of tree species dominating at different successional stages in an attempt to quantify the C stock and sink strength of tropical montane forests and how they may differ among continents.
  •  
9.
  • Nyirambangutse, Brigitte, 1982, et al. (författare)
  • Carbon stocks and dynamics at different successional stages in an Afromontane tropical forest
  • 2016
  • Ingår i: Biogeosciences Discussions. - : Copernicus GmbH. - 1810-6277. ; , s. 1-39
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • As a result of different types of disturbance, forests are a mixture of stands at different stages of ecological succession. Successional stage is likely to influence forest productivity and carbon storage, linking the degree of forest disturbance to the global carbon cycle and climate. Although tropical montane forests are an important part of tropical forest ecosystems (c. 8%, elevation > 1000 m a.s.l.), there are still significant knowledge gaps regarding the carbon dynamics and 15 stocks of these forests, and how these differ between early (ES) and late successional (LS) stages. This study examines the carbon (C) stock, relative growth rate (RGR), and net primary production (NPP) of ES and LS forest stands in an Afromontane tropical rainforest using data from inventories of quantitatively important ecosystem compartments in fifteen 0.5 ha plots in Nyungwe National Park in Rwanda. The total C stock was 35% larger in LS compared to ES plots due to significantly larger above ground biomass (AGB; 185 and 76 Mg C ha-1 20 in LS and ES plots, respectively), while the soil and root C stock (down to 45 cm depth in the mineral soil) did not significantly differ between the two successional stages (178 and 204 Mg C ha-1 in LS and ES plots, respectively). The main reasons for the difference in AGB were that ES trees had significantly lower stature and wood density compared to LS trees. However, ES and LS stands had similar total NPP (canopy, wood and roots of all plots ~ 9.4 Mg C ha-1) due to counterbalancing effects of differences in AGB (higher in LS stands) and RGR (higher in ES stands). The AGB in the LS 25 plots was considerably higher than the average value reported for old-growth tropical montane forest of Southeast Asia and central and South America at similar elevations and temperatures, and of the same magnitude as in tropical lowland forest of different regions. The results of this study highlight the importance of accounting for disturbance regimes and differences in wood density and allometry of tree species dominating at different successional stages in attempts to quantify the C stock and sink strength of 30 tropical montane forests and how it may differ among continents.
  •  
10.
  • Nyirambangutse, Brigitte, 1982, et al. (författare)
  • Spatial Variation of Above Ground Biomass and Diversity of Trees in Nyungwe Montane Rain Forest in Rwanda
  • 2012
  • Ingår i: http://www.eci.ox.ac.uk/africa/downloads/poster-abstracts.pdf.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Tropical rainforest plays an important role in the global terrestrial carbon cycle. This zone is undergoing rapid deforestation and degradation due to clearance for croplands, cattle pasture, logging and shifting cultivation. Few tropical forest sites have been the object of forest C cycle studies in detail. The lack of field data on the status of carbon stock and fluxes in central Africa is evident, which together with the high diversity of tree species contributes to the uncertainties in understanding the source/sink relationship of tropical African forests. A study has therefore been initiated to address questions on biodiversity (plant species), carbon fluxes and stocks and scaling of results to whole forests. The study aims at answering the following research questions: Is high diversity connected to high carbon stocks? Is variation in vegetation structure linked to the variation in carbon storage? Are nutrients, climate, disturbances (fire, logging) or topography important determinant factors for carbon storage and biodiversity? The study will be conducted in Nyungwe montane rain forest gazetted as a National Park to protect its extensive floral and faunal diversity covering an area of 970km2. Nyungwe is located in Southwest Rwanda (2o17´-2o50´S, 29o07´-29o26A´E). The forest is ranging between 1600-2950 m.a.s.l. and is one of the most biologically important rainforest in Albertine Rift region in terms of Biodiversity. Nyungwe consists of a mixture of primary and secondary forest. It supports a richness of plant and animal life. More than 260 species of trees and shrubs have been found at Nyungwe, including species endemic to the Albertine Rift. Nyungwe is also one of the most important sites for bird. 260 bird species have been found, some are endemic to the Albertine Rift. Thirteen species of primates populate the forest, including chimpanzees. The forest has a climate with a mean annual temperature of 15.5oC and rainfall averages 1744 mm/yr, with July and August being the only months when rainfall drops. Many forms of human disturbance occur in the forest, including fires, tree cutting, gold mining, honey collection, trapping, and poaching. In this study an east-westerly transect of experimental plots is to be set up where different types of forest occur on approximately the same altitude 2400-2500 m.a.s.l. primary forests stands, secondary forests stands and plantations in the buffer zones. We are sampling within the two plant communities with the highest relative density of Syzygium guineense (18.2 %) representing primary forest and Macaranga kilimandscharica (17.5 %) representing secondary forest and in the two most frequently occurring genus in the buffer zone: Eucalyptus and Pinus. We will describe forest C dynamics in different live biomass components (aboveground and belowground live biomass) and soil organic matter divided into two components: litter and humus. Finally we will investigate fluxes between Carbon pools on live over-story and under-story of trees, shrubs, herbs, and its fine roots. An outline of the study, together with results from an initial measurement campaign on spatial diversity of trees species and above ground biomass, is currently being compiled and will be reported.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy