SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Uhlén Mathias) ;lar1:(ki)"

Sökning: WFRF:(Uhlén Mathias) > Karolinska Institutet

  • Resultat 1-10 av 167
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Attems, Johannes, et al. (författare)
  • Clusters of secretagogin-expressing neurons in the aged human olfactory tract lack terminal differentiation
  • 2012
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 109:16, s. 6259-6264
  • Tidskriftsartikel (refereegranskat)abstract
    • Expanding the repertoire of molecularly diverse neurons in the human nervous system is paramount to characterizing the neuronal networks that underpin sensory processing. Defining neuronal identities is particularly timely in the human olfactory system, whose structural differences from nonprimate macrosmatic species have recently gained momentum. Here, we identify clusters of bipolar neurons in a previously unknown outer "shell" domain of the human olfactory tract, which express secretagogin, a cytosolic Ca2+ binding protein. These "shell" neurons are wired into the olfactory circuitry because they can receive mixed synaptic inputs. Unexpectedly, secretagogin is often coexpressed with polysialylated-neural cell adhesion molecule, beta-III-tubulin, and calretinin, suggesting that these neurons represent a cell pool that might have escaped terminal differentiation into the olfactory circuitry. We hypothesized that secretagogin-containing "shell" cells may be eliminated from the olfactory axis under neurodegenerative conditions. Indeed, the density, but not the morphological or neurochemical integrity, of secretagogin-positive neurons selectively decreases in the olfactory tract in Alzheimer's disease. In conclusion, secretagogin identifies a previously undescribed cell pool whose cytoarchitectonic arrangements and synaptic connectivity are poised to modulate olfactory processing in humans.
  •  
2.
  •  
3.
  • Mikus, Maria, et al. (författare)
  • Allergome-wide peptide microarrays enable epitope deconvolution in allergen-specific immunotherapy
  • 2020
  • Ingår i: Journal of Allergy and Clinical Immunology. - : Mosby Inc.. - 0091-6749 .- 1097-6825.
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The interaction of allergens and allergen-specific IgE initiates the allergic cascade after crosslinking of receptors on effector cells. Antibodies of other isotypes may modulate such a reaction. Receptor crosslinking requires binding of antibodies to multiple epitopes on the allergen. Limited information is available on the complexity of the epitope structure of most allergens. Objectives: We sought to allow description of the complexity of IgE, IgG4, and IgG epitope recognition at a global, allergome-wide level during allergen-specific immunotherapy (AIT). Methods: We generated an allergome-wide microarray comprising 731 allergens in the form of more than 172,000 overlapping 16-mer peptides. Allergen recognition by IgE, IgG4, and IgG was examined in serum samples collected from subjects undergoing AIT against pollen allergy. Results: Extensive induction of linear peptide-specific Phl p 1– and Bet v 1–specific humoral immunity was demonstrated in subjects undergoing a 3-year-long AIT against grass and birch pollen allergy, respectively. Epitope profiles differed between subjects but were largely established already after 1 year of AIT, suggesting that dominant allergen-specific antibody clones remained as important contributors to humoral immunity following their initial establishment during the early phase of AIT. Complex, subject-specific patterns of allergen isoform and group cross-reactivities in the repertoires were observed, patterns that may indicate different levels of protection against different allergen sources. Conclusions: The study highlights the complexity and subject-specific nature of allergen epitopes recognized following AIT. We envisage that epitope deconvolution will be an important aspect of future efforts to describe and analyze the outcomes of AIT in a personalized manner.
  •  
4.
  • Abdellah, Tebani, et al. (författare)
  • Integration of molecular profiles in a longitudinal wellness profiling cohort.
  • 2020
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • An important aspect of precision medicine is to probe the stability in molecular profiles among healthy individuals over time. Here, we sample a longitudinal wellness cohort with 100 healthy individuals and analyze blood molecular profiles including proteomics, transcriptomics, lipidomics, metabolomics, autoantibodies andimmune cell profiling, complementedwith gut microbiota composition and routine clinical chemistry. Overall, our results show high variation between individuals across different molecular readouts, while the intra-individual baseline variation is low. The analyses show that each individual has a unique and stable plasma protein profile throughout the study period and that many individuals also show distinct profiles with regards to the other omics datasets, with strong underlying connections between the blood proteome and the clinical chemistry parameters. In conclusion, the results support an individual-based definition of health and show that comprehensive omics profiling in a longitudinal manner is a path forward for precision medicine.
  •  
5.
  • Adori, Csaba, et al. (författare)
  • Critical role of somatostatin receptor 2 in the vulnerability of the central noradrenergic system : new aspects on Alzheimer's disease
  • 2015
  • Ingår i: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 129:4, s. 541-563
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease and other age-related neurodegenerative disorders are associated with deterioration of the noradrenergic locus coeruleus (LC), a probable trigger for mood and memory dysfunction. LC noradrenergic neurons exhibit particularly high levels of somatostatin binding sites. This is noteworthy since cortical and hypothalamic somatostatin content is reduced in neurodegenerative pathologies. Yet a possible role of a somatostatin signal deficit in the maintenance of noradrenergic projections remains unknown. Here, we deployed tissue microarrays, immunohistochemistry, quantitative morphometry and mRNA profiling in a cohort of Alzheimer's and age-matched control brains in combination with genetic models of somatostatin receptor deficiency to establish causality between defunct somatostatin signalling and noradrenergic neurodegeneration. In Alzheimer's disease, we found significantly reduced somatostatin protein expression in the temporal cortex, with aberrant clustering and bulging of tyrosine hydroxylase-immunoreactive afferents. As such, somatostatin receptor 2 (SSTR2) mRNA was highly expressed in the human LC, with its levels significantly decreasing from Braak stages III/IV and onwards, i.e., a process preceding advanced Alzheimer's pathology. The loss of SSTR2 transcripts in the LC neurons appeared selective, since tyrosine hydroxylase, dopamine beta-hydroxylase, galanin or galanin receptor 3 mRNAs remained unchanged. We modeled these pathogenic changes in Sstr2 (-/-) mice and, unlike in Sstr1 (-/-) or Sstr4 (-/-) genotypes, they showed selective, global and progressive degeneration of their central noradrenergic projections. However, neuronal perikarya in the LC were found intact until late adulthood (< 8 months) in Sstr2 (-/-) mice. In contrast, the noradrenergic neurons in the superior cervical ganglion lacked SSTR2 and, as expected, the sympathetic innervation of the head region did not show any signs of degeneration. Our results indicate that SSTR2-mediated signaling is integral to the maintenance of central noradrenergic projections at the system level, and that early loss of somatostatin receptor 2 function may be associated with the selective vulnerability of the noradrenergic system in Alzheimer's disease.
  •  
6.
  • Adori, Csaba, et al. (författare)
  • Disorganization and degeneration of liver sympathetic innervations in nonalcoholic fatty liver disease revealed by 3D imaging
  • 2021
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 7:30
  • Tidskriftsartikel (refereegranskat)abstract
    • Hepatic nerves have a complex role in synchronizing liver metabolism. Here, we used three-dimensional (3D) immunoimaging to explore the integrity of the hepatic nervous system in experimental and human nonalcoholic fatty liver disease (NAFLD). We demonstrate parallel signs of mild degeneration and axonal sprouting of sympathetic innervations in early stages of experimental NAFLD and a collapse of sympathetic arborization in steatohepatitis. Human fatty livers display a similar pattern of sympathetic nerve degeneration, correlating with the severity of NAFLD pathology. We show that chronic sympathetic hyperexcitation is a key factor in the axonal degeneration, here genetically phenocopied in mice deficient of the Rac-1 activator Vav3. In experimental steatohepatitis, 3D imaging reveals a severe portal vein contraction, spatially correlated with the extension of the remaining nerves around the portal vein, enlightening a potential intrahepatic neuronal mechanism of portal hypertension. These fundamental alterations in liver innervation and vasculature uncover previously unidentified neuronal components in NAFLD pathomechanisms.
  •  
7.
  • Adori, Csaba, et al. (författare)
  • Exploring the role of neuropeptide S in the regulation of arousal : a functional anatomical study
  • 2016
  • Ingår i: Brain Structure and Function. - : Springer. - 1863-2653 .- 1863-2661. ; 221:7, s. 3521-3546
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuropeptide S (NPS) is a regulatory peptide expressed by limited number of neurons in the brainstem. The simultaneous anxiolytic and arousal-promoting effect of NPS suggests an involvement in mood control and vigilance, making the NPS-NPS receptor system an interesting potential drug target. Here we examined, in detail, the distribution of NPS-immunoreactive (IR) fiber arborizations in brain regions of rat known to be involved in the regulation of sleep and arousal. Such nerve terminals were frequently apposed to GABAergic/galaninergic neurons in the ventro-lateral preoptic area (VLPO) and to tyrosine hydroxylase-IR neurons in all hypothalamic/thalamic dopamine cell groups. Then we applied the single platform-on-water (mainly REM) sleep deprivation method to study the functional role of NPS in the regulation of arousal. Of the three pontine NPS cell clusters, the NPS transcript levels were increased only in the peri-coerulear group in sleep-deprived animals, but not in stress controls. The density of NPS-IR fibers was significantly decreased in the median preoptic nucleus-VLPO region after the sleep deprivation, while radioimmunoassay and mass spectrometry measurements showed a parallel increase of NPS in the anterior hypothalamus. The expression of the NPS receptor was, however, not altered in the VLPO-region. The present results suggest a selective activation of one of the three NPS-expressing neuron clusters as well as release of NPS in distinct forebrain regions after sleep deprivation. Taken together, our results emphasize a role of the peri-coerulear cluster in the modulation of arousal, and the importance of preoptic area for the action of NPS on arousal and sleep.
  •  
8.
  • Adori, Csaba, et al. (författare)
  • Neuropeptide S- and Neuropeptide S receptor-expressing neuron populations in the human pons
  • 2015
  • Ingår i: Frontiers in Neuroanatomy. - : Frontiers Media SA. - 1662-5129. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuropeptide S (NPS) is a regulatory peptide with potent pharmacological effects. In rodents, NPS is expressed in a few pontine cell clusters. Its receptor (NPSR1) is, however, widely distributed in the brain. The anxiolytic and arousal promoting effects of NPS make the NPS NPSR1 system an interesting potential drug target in mood-related disorders. However, so far possible disease-related mechanisms involving NPS have only been studied in rodents. To validate the relevance of these animal studies for i.a. drug development, we have explored the distribution of NPS-expressing neurons in the human pons using in situ hybridization and stereological methods and we compared the distribution of NPS mRNA expressing neurons in the human and rat brain. The calculation revealed a total number of 22,317 +/- 2411 NPS mRNA-positive neurons in human, bilaterally. The majority of cells (84%) were located in the parabrachial area in human: in the extension of the medial and lateral parabrachial nuclei, in the Kolliker-Fuse nucleus and around the adjacent lateral lemniscus. In human, in sharp contrast to the rodents, only very few NPS-positive cells (5%) were found close to the locus coeruleus. In addition, we identified a smaller cell cluster (11% of all NPS cells) in the pontine central gray matter both in human and rat, which has not been described previously even in rodents. We also examined the distribution of NPSR1 mRNA-expressing neurons in the human pons. These cells were mainly located in the rostral laterodorsal tegmental nucleus, the cuneiform nucleus, the microcellular tegmental nucleus region and in the periaqueductal gray. Our results show that both NPS and NPSR1 in the human pons are preferentially localized in regions of importance for integration of visceral autonomic information and emotional behavior. The reported interspecies differences must, however, be considered when looking for targets for new pharmacotherapeutical interventions.
  •  
9.
  • Adori, Monika, et al. (författare)
  • Hepatic Innervations and Nonalcoholic Fatty Liver Disease
  • 2023
  • Ingår i: Seminars in liver disease (Print). - : Thieme Medical Publishers, Inc.. - 0272-8087 .- 1098-8971. ; 43:02, s. 149-162
  • Forskningsöversikt (refereegranskat)abstract
    • Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder. Increased sympathetic (noradrenergic) nerve tone has a complex role in the etiopathomechanism of NAFLD, affecting the development/progression of steatosis, inflammation, fibrosis, and liver hemodynamical alterations. Also, lipid sensing by vagal afferent fibers is an important player in the development of hepatic steatosis. Moreover, disorganization and progressive degeneration of liver sympathetic nerves were recently described in human and experimental NAFLD. These structural alterations likely come along with impaired liver sympathetic nerve functionality and lack of adequate hepatic noradrenergic signaling. Here, we first overview the anatomy and physiology of liver nerves. Then, we discuss the nerve impairments in NAFLD and their pathophysiological consequences in hepatic metabolism, inflammation, fibrosis, and hemodynamics. We conclude that further studies considering the spatial-temporal dynamics of structural and functional changes in the hepatic nervous system may lead to more targeted pharmacotherapeutic advances in NAFLD.
  •  
10.
  • Agaton, C., et al. (författare)
  • Affinity proteomics for systematic protein profiling of chromosome 21 gene products in human tissues
  • 2003
  • Ingår i: Molecular & Cellular Proteomics. - 1535-9476 .- 1535-9484. ; 2, s. 405-
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we show that an affinity proteomics strategy using affinity-purified antibodies raised against recombinant human protein fragments can be used for chromosome-wide protein profiling. The approach is based on affinity reagents raised toward bioinformatics-designed protein epitope signature tags corresponding to unique regions of individual gene loci. The genes of human chromosome 21 identified by the genome efforts were investigated, and the success rates for de novo cloning, protein production, and antibody generation were 85, 76, and 56%, respectively. Using human tissue arrays, a systematic profiling of protein expression and subcellular localization was undertaken for the putative gene products. The results suggest that this affinity proteomics strategy can be used to produce a proteome atlas, describing distribution and expression of proteins in normal tissues as well as in common cancers and other forms of diseased tissues.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 167
Typ av publikation
tidskriftsartikel (164)
forskningsöversikt (3)
Typ av innehåll
refereegranskat (155)
övrigt vetenskapligt/konstnärligt (12)
Författare/redaktör
Uhlén, Mathias (166)
Nilsson, Peter (38)
Schwenk, Jochen M. (37)
Fagerberg, Linn (36)
Pontén, Fredrik (30)
Mulder, Jan (30)
visa fler...
Edfors, Fredrik (20)
von Feilitzen, Kalle (18)
Lindskog, Cecilia (18)
Mardinoglu, Adil (17)
Zhong, Wen (17)
Lundberg, Emma (16)
Odeberg, Jacob (16)
Oksvold, Per (15)
Sivertsson, Åsa (13)
Nielsen, Jens B, 196 ... (12)
Zhang, Cheng (12)
Hong, Mun-Gwan (12)
Zwahlen, Martin (11)
Karlsson, Max (10)
Odeberg, Jacob, Prof ... (10)
Forsström, Björn (10)
Hober, Sophia (10)
Mitsios, Nicholas (10)
Hokfelt, Tomas (10)
Li, Xiangyu (10)
Arif, Muhammad (9)
Bergström, Göran, 19 ... (9)
Borén, Jan, 1963 (9)
Harkany, Tibor (9)
Gummesson, Anders, 1 ... (8)
Mulder, J (8)
Mardinoglu, Adil, 19 ... (8)
Butler, Lynn M. (8)
Kampf, Caroline (8)
Hallström, Björn M. (8)
Tegel, Hanna (8)
Abdellah, Tebani (7)
Dodig-Crnkovic, Tea (7)
Barde, Swapnali (7)
Dusart, Philip (7)
Kotol, David (7)
Fredolini, Claudia (7)
Turkez, Hasan (6)
Zhang, C. (6)
Lundeberg, Joakim (6)
Adori, Csaba (6)
Danielsson, Frida (6)
Kim, Woonghee (6)
Asplund, Anna (6)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (164)
Uppsala universitet (48)
Göteborgs universitet (25)
Chalmers tekniska högskola (15)
Lunds universitet (13)
visa fler...
Linköpings universitet (12)
Stockholms universitet (9)
Umeå universitet (4)
Örebro universitet (2)
Luleå tekniska universitet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (167)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (116)
Naturvetenskap (71)
Teknik (8)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy