SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Uhlén Mathias) ;pers:(Benfeitas Rui)"

Sökning: WFRF:(Uhlén Mathias) > Benfeitas Rui

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arif, Muhammad, et al. (författare)
  • Integrative transcriptomic analysis of tissue-specific metabolic crosstalk after myocardial infarction
  • 2021
  • Ingår i: Elife. - : eLife Sciences Publications, Ltd. - 2050-084X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Myocardial infarction (MI) promotes a range of systemic effects, many of which are unknown. Here, we investigated the alterations associated with MI progression in heart and other metabolically active tissues (liver, skeletal muscle, and adipose) in a mouse model of MI (induced by ligating the left ascending coronary artery) and sham-operated mice. We performed a genomewide transcriptomic analysis on tissue samples obtained 6- and 24 hr post MI or sham operation. By generating tissue-specific biological networks, we observed: (1) dysregulation in multiple biological processes (including immune system, mitochondrial dysfunction, fatty-acid beta-oxidation, and RNA and protein processing) across multiple tissues post MI and (2) tissue-specific dysregulation in biological processes in liver and heart post MI. Finally, we validated our findings in two independent MI cohorts. Overall, our integrative analysis highlighted both common and specific biological responses to MI across a range of metabolically active tissues.
  •  
2.
  • Benfeitas, Rui, et al. (författare)
  • Characterization of heterogeneous redox responses in hepatocellular carcinoma patients using network analysis
  • 2019
  • Ingår i: Ebiomedicine. - : Elsevier BV. - 2352-3964. ; 40, s. 471-487
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Redox metabolism is often considered a potential target for cancer treatment, but a systematic examination of redox responses in hepatocellular carcinoma (HCC) is missing. Methods: Here, we employed systems biology and biological network analyses to reveal key roles of genes associated with redox metabolism in HCC by integrating multi-omics data. Findings: We found that several redox genes, including 25 novel potential prognostic genes, are significantly co-expressed with liver-specific genes and genes associated with immunity and inflammation. Based on an integrative analysis, we found that HCC tumors display antagonistic behaviors in redox responses. The two HCC groups are associated with altered fatty acid, amino acid, drug and hormone metabolism, differentiation, proliferation, and NADPH-independent vs - dependent antioxidant defenses. Redox behavior varies with known tumor subtypes and progression, affecting patient survival. These antagonistic responses are also displayed at the protein and metabolite level and were validated in several independent cohorts. We finally showed the differential redox behavior using mice transcriptomics in HCC and noncancerous tissues and associated with hypoxic features of the two redox gene groups. Interpretation: Our integrative approaches highlighted mechanistic differences among tumors and allowed the identification of a survival signature and several potential therapeutic targets for the treatment of HCC.
  •  
3.
  • Benfeitas, Rui, et al. (författare)
  • New challenges to study heterogeneity in cancer redox metabolism
  • 2017
  • Ingår i: Frontiers in Cell and Developmental Biology. - : Frontiers Media S.A.. - 2296-634X. ; 5:JUL
  • Tidskriftsartikel (refereegranskat)abstract
    • Reactive oxygen species (ROS) are important pathophysiological molecules involved in vital cellular processes. They are extremely harmful at high concentrations because they promote the generation of radicals and the oxidation of lipids, proteins, and nucleic acids, which can result in apoptosis. An imbalance of ROS and a disturbance of redox homeostasis are now recognized as a hallmark of complex diseases. Considering that ROS levels are significantly increased in cancer cells due to mitochondrial dysfunction, ROS metabolism has been targeted for the development of efficient treatment strategies, and antioxidants are used as potential chemotherapeutic drugs. However, initial ROS-focused clinical trials in which antioxidants were supplemented to patients provided inconsistent results, i.e., improved treatment or increased malignancy. These different outcomes may result from the highly heterogeneous redox responses of tumors in different patients. Hence, population-based treatment strategies are unsuitable and patient-tailored therapeutic approaches are required for the effective treatment of patients. Moreover, due to the crosstalk between ROS, reducing equivalents [e.g., NAD(P)H] and central metabolism, which is heterogeneous in cancer, finding the best therapeutic target requires the consideration of system-wide approaches that are capable of capturing the complex alterations observed in all of the associated pathways. Systems biology and engineering approaches may be employed to overcome these challenges, together with tools developed in personalized medicine. However, ROS- and redox-based therapies have yet to be addressed by these methodologies in the context of disease treatment. Here, we review the role of ROS and their coupled redox partners in tumorigenesis. Specifically, we highlight some of the challenges in understanding the role of hydrogen peroxide (H2O2), one of the most important ROS in pathophysiology in the progression of cancer. We also discuss its interplay with antioxidant defenses, such as the coupled peroxiredoxin/thioredoxin and glutathione/glutathione peroxidase systems, and its reducing equivalent metabolism. Finally, we highlight the need for system-level and patient-tailored approaches to clarify the roles of these systems and identify therapeutic targets through the use of the tools developed in personalized medicine.
  •  
4.
  • Bidkhori, Gholamreza, et al. (författare)
  • Metabolic Network-Based Identification and Prioritization o f Anticancer Targets Based on Expression Data in Hepatocellular Carcinoma
  • 2018
  • Ingår i: Frontiers in Physiology. - : Frontiers Media SA. - 1664-042X. ; 9:JUL
  • Tidskriftsartikel (refereegranskat)abstract
    • Hepatocellular carcinoma (HCC) is a deadly form of liver cancer with high mortality worldwide. Unfortunately, the large heterogeneity of this disease makes it difficult to develop effective treatment strategies. Cellular network analyses have been employed to study heterogeneity in cancer, and to identify potential therapeutic targets. However, the existing approaches do not consider metabolic growth requirements, i.e., biological network functionality, to rank candidate targets while preventing toxicity to non-cancerous tissues. Here, we developed an algorithm to overcome these issues based on integration of gene expression data, genome-scale metabolic models, network controllability, and dispensability, as well as toxicity analysis. This method thus predicts and ranks potential anticancer non-toxic controlling metabolite and gene targets. Our algorithm encompasses both objective-driven and-independent tasks, and uses network topology to finally rank the predicted therapeutic targets. We employed this algorithm to the analysis of transcriptomic data for 50 HCC patients with both cancerous and non-cancerous samples. We identified several potential targets that would prevent cell growth, including 74 anticancer metabolites, and 3 gene targets (PRKACA, PGS1, and CRLS1). The predicted anticancer metabolites showed good agreement with existing FDA-approved cancer drugs, and the 3 genes were experimentally validated by performing experiments in HepG2 and Hep3B liver cancer cell lines. Our observations indicate that our novel approach successfully identifies therapeutic targets for effective treatment of cancer. This approach may also be applied to any cancer type that has tumor and non-tumor gene or protein expression data.
  •  
5.
  • Bidkhori, Gholamreza, et al. (författare)
  • Metabolic network-based stratification of hepatocellular carcinoma reveals three distinct tumor subtypes
  • 2018
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 115:50
  • Tidskriftsartikel (refereegranskat)abstract
    • Hepatocellular carcinoma (HCC) is one of the most frequent forms of liver cancer, and effective treatment methods are limited due to tumor heterogeneity. There is a great need for comprehensive approaches to stratify HCC patients, gain biological insights into subtypes, and ultimately identify effective therapeutic targets. We stratified HCC patients and characterized each subtype using transcriptomics data, genome-scale metabolic networks and network topology/controllability analysis. This comprehensive systems-level analysis identified three distinct subtypes with substantial differences in metabolic and signaling pathways reflecting at genomic, transcriptomic, and proteomic levels. These subtypes showed large differences in clinical survival associated with altered kynurenine metabolism, WNT/beta-catenin-associated lipid metabolism, and PI3K/AKT/mTOR signaling. Integrative analyses indicated that the three subtypes rely on alternative enzymes (e.g., ACSS1/ACSS2/ACSS3, PKM/PKLR, ALDOB/ALDOA, MTHFD1L/MTHFD2/MTHFD1) to catalyze the same reactions. Based on systems-level analysis, we identified 8 to 28 subtype-specific genes with pivotal roles in controlling the metabolic network and predicted that these genes may be targeted for development of treatment strategies for HCC subtypes by performing in silico analysis. To validate our predictions, we performed experiments using HepG2 cells under normoxic and hypoxic conditions and observed opposite expression patterns between genes expressed in high/moderate/low-survival tumor groups in response to hypoxia, reflecting activated hypoxic behavior in patients with poor survival. In conclusion, our analyses showed that the heterogeneous HCC tumors can be stratified using a metabolic network-driven approach, which may also be applied to other cancer types, and this stratification may have clinical implications to drive the development of precision medicine.
  •  
6.
  • Lam, Simon, et al. (författare)
  • Systems Analysis Reveals Ageing-Related Perturbations in Retinoids and Sex Hormones in Alzheimer's and Parkinson's Diseases
  • 2021
  • Ingår i: Biomedicines. - : MDPI AG. - 2227-9059. ; 9:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Neurodegenerative diseases, including Alzheimer's (AD) and Parkinson's diseases (PD), are complex heterogeneous diseases with highly variable patient responses to treatment. Due to the growing evidence for ageing-related clinical and pathological commonalities between AD and PD, these diseases have recently been studied in tandem. In this study, we analysed transcriptomic data from AD and PD patients, and stratified these patients into three subclasses with distinct gene expression and metabolic profiles. Through integrating transcriptomic data with a genome-scale metabolic model and validating our findings by network exploration and co-analysis using a zebrafish ageing model, we identified retinoids as a key ageing-related feature in all subclasses of AD and PD. We also demonstrated that the dysregulation of androgen metabolism by three different independent mechanisms is a source of heterogeneity in AD and PD. Taken together, our work highlights the need for stratification of AD/PD patients and development of personalised and precision medicine approaches based on the detailed characterisation of these subclasses.
  •  
7.
  • Lee, Sunjae, et al. (författare)
  • TCSBN: a database of tissue and cancer specific biological networks
  • 2018
  • Ingår i: Nucleic Acids Research. - : Oxford University Press (OUP). - 0305-1048 .- 1362-4962. ; 46:D1
  • Tidskriftsartikel (refereegranskat)abstract
    • Biological networks provide new opportunities for understanding the cellular biology in both health and disease states. We generated tissue specific integrated networks (INs) for liver, muscle and adipose tissues by integratingmetabolic, regulatory and protein-protein interaction networks. We also generated human co-expression networks (CNs) for 46 normal tissues and 17 cancers to explore the functional relationships between genes as well as their relationships with biological functions, and investigate the overlap between functional and physical interactions provided by CNs and INs, respectively. These networks can be employed in the analysis of omics data, provide detailed insight into disease mechanisms by identifying the key biological components and eventually can be used in the development of efficient treatment strategies. Moreover, comparative analysis of the networks may allow for the identification of tissue-specific targets that can be used in the development of drugs with the minimum toxic effect to other human tissues. These context-specific INs and CNs are presented in an interactive website http://inetmodels.com without any limitation.
  •  
8.
  • Mohammadi, Elyas, et al. (författare)
  • Applications of Genome-Wide Screening and Systems Biology Approaches in Drug Repositioning
  • 2020
  • Ingår i: Cancers. - : MDPI AG. - 2072-6694. ; 12:9, s. 1-24
  • Forskningsöversikt (refereegranskat)abstract
    • Simple Summary Drug repurposing is an accelerated route for drug development and a promising approach for finding medications for orphan and common diseases. Here, we compiled databases that comprise both computationally- or experimentally-derived data, and categorized them based on quiddity and origin of data, further focusing on those that present high throughput omic data or drug screens. These databases were then contextualized with genome-wide screening methods such as CRISPR/Cas9 and RNA interference, as well as state of art systems biology approaches that enable systematic characterizations of multi-omic data to find new indications for approved drugs or those that reached the latest phases of clinical trials. Modern drug discovery through de novo drug discovery entails high financial costs, low success rates, and lengthy trial periods. Drug repositioning presents a suitable approach for overcoming these issues by re-evaluating biological targets and modes of action of approved drugs. Coupling high-throughput technologies with genome-wide essentiality screens, network analysis, genome-scale metabolic modeling, and machine learning techniques enables the proposal of new drug-target signatures and uncovers unanticipated modes of action for available drugs. Here, we discuss the current issues associated with drug repositioning in light of curated high-throughput multi-omic databases, genome-wide screening technologies, and their application in systems biology/medicine approaches.
  •  
9.
  • Rosario, Dorines, et al. (författare)
  • Understanding the representative gut microbiota dysbiosis in metformin-treated Type 2 diabetes patients using genome-scale metabolic modeling
  • 2018
  • Ingår i: Frontiers in Physiology. - : Frontiers Media SA. - 1664-042X. ; 9:JUN
  • Tidskriftsartikel (refereegranskat)abstract
    • Dysbiosis in the gut microbiome composition may be promoted by therapeutic drugs such as metformin, the world's most prescribed antidiabetic drug. Under metformin treatment, disturbances of the intestinal microbes lead to increased abundance of Escherichia spp., Akkermansia muciniphila, Subdoligranulum variabile and decreased abundance of Intestinibacter bartlettii. This alteration may potentially lead to adverse effects on the host metabolism, with the depletion of butyrate producer genus. However, an increased production of butyrate and propionate was verified in metformin-treated Type 2 diabetes (T2D) patients. The mechanisms underlying these nutritional alterations and their relation with gut microbiota dysbiosis remain unclear. Here, we used Genome-scale Metabolic Models of the representative gut bacteria Escherichia spp., I. bartlettii, A. muciniphila, and S. variabile to elucidate their bacterial metabolism and its effect on intestinal nutrient pool, including macronutrients (e.g., amino acids and short chain fatty acids), minerals and chemical elements (e.g., iron and oxygen). We applied flux balance analysis (FBA) coupled with synthetic lethality analysis interactions to identify combinations of reactions and extracellular nutrients whose absence prevents growth. Our analyses suggest that Escherichia sp. is the bacteria least vulnerable to nutrient availability. We have also examined bacterial contribution to extracellular nutrients including short chain fatty acids, amino acids, and gasses. For instance, Escherichia sp. and S. variabile may contribute to the production of important short chain fatty acids (e.g., acetate and butyrate, respectively) involved in the host physiology under aerobic and anaerobic conditions. We have also identified pathway susceptibility to nutrient availability and reaction changes among the four bacteria using both FBA and flux variability analysis. For instance, lipopolysaccharide synthesis, nucleotide sugar metabolism, and amino acid metabolism are pathways susceptible to changes in Escherichia sp. and A. muciniphila. Our observations highlight important commensal and competing behavior, and their association with cellular metabolism for prevalent gut microbes. The results of our analysis have potential important implications for development of new therapeutic approaches in T2D patients through the development of prebiotics, probiotics, or postbiotics.
  •  
10.
  • Turanli, Beste, et al. (författare)
  • Discovery of therapeutic agents for prostate cancer using genome-scale metabolic modeling and drug repositioning
  • 2019
  • Ingår i: EBioMedicine. - : Elsevier BV. - 2352-3964. ; 42, s. 386-396
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-scale metabolic models (GEMs) offer insights into cancer metabolism and have been used to identify potential biomarkers and drug targets. Drug repositioning is a time- and cost-effective method of drug discovery that can be applied together with GEMs for effective cancer treatment. Methods: In this study, we reconstruct a prostate cancer (PRAD)-specific GEM for exploring prostate cancer metabolism and also repurposing new therapeutic agents that can be used in development of effective cancer treatment. We integrate global gene expression profiling of cell lines with >1000 different drugs through the use of prostate cancer GEM and predict possible drug-gene interactions. Findings: We identify the key reactions with altered fluxes based on the gene expression changes and predict the potential drug effect in prostate cancer treatment. We find that sulfamethoxypyridazine, azlocillin, hydroflumethiazide, and ifenprodil can be repurposed for the treatment of prostate cancer based on an in silico cell viability assay. Finally, we validate the effect of ifenprodil using an in vitro cell assay and show its inhibitory effect on a prostate cancer cell line. Interpretation: Our approach demonstate how GEMs can be used to predict therapeutic agents for cancer treatment based on drug repositioning. Besides, it paved a way and shed a light on the applicability of computational models to real-world biomedical or pharmaceutical problems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13
Typ av publikation
tidskriftsartikel (12)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (13)
Författare/redaktör
Uhlén, Mathias (13)
Mardinoglu, Adil, 19 ... (9)
Arif, Muhammad (8)
Zhang, C. (8)
Bidkhori, Gholamreza (8)
visa fler...
Nielsen, Jens B, 196 ... (6)
Borén, Jan, 1963 (6)
Mardinoglu, Adil (4)
Lee, Sunjae (4)
Turkez, Hasan (3)
Klevstig, Martina (3)
Zhang, Cheng (2)
Kim, Woonghee (2)
Oksvold, Per (1)
Edqvist, Per-Henrik ... (1)
Pontén, Fredrik (1)
Glimelius, Bengt (1)
Marschall, Hanns-Ulr ... (1)
Abdellah, Tebani (1)
von Feilitzen, Kalle (1)
Edfors, Fredrik (1)
Schwenk, Jochen M. (1)
Nilsson, Peter (1)
Fagerberg, Linn (1)
Lindskog, Cecilia (1)
Lundberg, Emma (1)
Adiels, Martin, 1976 (1)
Taskinen, Marja-Riit ... (1)
Björnson, Elias, 198 ... (1)
Ståhlman, Marcus, 19 ... (1)
Micke, Patrick (1)
Sjöblom, Tobias (1)
Turkez, H. (1)
Mohammadi, Elyas (1)
Wikstrom, J (1)
Levin, Malin, 1973 (1)
Brunnström, Hans (1)
Nielsen, Jens (1)
Doran, S (1)
Clausen, M. (1)
Etal, D. (1)
Lee, SangWook (1)
Bergh, Per-Olof (1)
Shoaie, Saeed, 1985 (1)
Djureinovic, D (1)
Mattsson, Johanna So ... (1)
Lam, Simon (1)
Turanli, Beste (1)
Mukhopadhyay, B. (1)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (13)
Chalmers tekniska högskola (11)
Göteborgs universitet (6)
Stockholms universitet (3)
Karolinska Institutet (2)
Uppsala universitet (1)
visa fler...
Lunds universitet (1)
visa färre...
Språk
Engelska (13)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (13)
Naturvetenskap (11)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy