SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Uhlén Mathias) ;pers:(Wernerus Henrik)"

Sökning: WFRF:(Uhlén Mathias) > Wernerus Henrik

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Berglund, Lisa, et al. (författare)
  • A genecentric Human Protein Atlas for expression profiles based on antibodies
  • 2008
  • Ingår i: Molecular & Cellular Proteomics. - 1535-9476 .- 1535-9484. ; 7:10, s. 2019-2027
  • Forskningsöversikt (refereegranskat)abstract
    • An attractive path forward in proteomics is to experimentally annotate the human protein complement of the genome in a genecentric manner. Using antibodies, it might be possible to design protein-specific probes for a representative protein from every protein-coding gene and to subsequently use the antibodies for systematical analysis of cellular distribution and subcellular localization of proteins in normal and disease tissues. A new version (4.0) of the Human Protein Atlas has been developed in a genecentric manner with the inclusion of all human genes and splice variants predicted from genome efforts together with a visualization of each protein with characteristics such as predicted membrane regions, signal peptide, and protein domains and new plots showing the uniqueness (sequence similarity) of every fraction of each protein toward all other human proteins. The new version is based on tissue profiles generated from 6120 antibodies with more than five million immunohistochemistry-based images covering 5067 human genes, corresponding to approximately 25% of the human genome. Version 4.0 includes a putative list of members in various protein classes, both functional classes, such as kinases, transcription factors, G-protein-coupled receptors, etc., and project-related classes, such as candidate genes for cancer or cardiovascular diseases. The exact antigen sequence for the internally generated antibodies has also been released together with a visualization of the application-specific validation performed for each antibody, including a protein array assay, Western blot analysis, immunohistochemistry, and, for a large fraction, immunofluorescence-based confocal microscopy. New search functionalities have been added to allow complex queries regarding protein expression profiles, protein classes, and chromosome location. The new version of the protein atlas thus is a resource for many areas of biomedical research, including protein science and biomarker discovery.
  •  
2.
  • Berglund, Lisa, et al. (författare)
  • Generation of validated antibodies towards the human proteome
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Here we show the results from a large effort to generate antibodies towards the human proteome. A high-throughput strategy was developed based on cloning and expression of antigens as recombitant protein epitope signature tags (PrESTs) Affinity purified polyclonal antibodies were generated, followed by validation by protein microarrays, Western blotting and microarray-based immunohistochemistry. PrESTs were selected based on sequence uniqueness relative the proteome and a bioinformatics analysis showed that unique antigens can be found for at least 85% of the proteome using this general strategy. The success rate from antigen selection to validated antibodies was 31%, and from protein to antibody 55%. Interestingly, membrane-bound and soluble proteins performed equally and PrEST lengths between 75 and 125 amino acids were found to give the highest yield of validated antibodies. Multiple antigens were selected for many genes and the results suggest that specific antibodies can be systematically generated to most human proteibs.
  •  
3.
  • Falk, Ronny, et al. (författare)
  • Targeted protein pullout from human tissue samples using competitive elution
  • 2011
  • Ingår i: Biotechnology Journal. - : Wiley. - 1860-6768 .- 1860-7314. ; 6:1, s. 28-37
  • Tidskriftsartikel (refereegranskat)abstract
    • One commonly used strategy to gain information on the proteins in a cell is to isolate the proteins of interest by specific binders, often antibodies. Not only the specificity of the capturing antibodies but also the washing and elution conditions are crucial to avoid false-positive protein identifications. Eluting the target protein from the matrix, while avoiding the release of unrelated background proteins, should both provide more correct information on the target protein and its interaction partners, and minimize the effort to perform downstream analyses through the reduced number of eluted proteins. In this study, a novel approach for selective protein pullout is presented. Monospecific antibodies were used to selectively pullout target proteins from a complex biosample. Subsequently, the target proteins were competitively eluted from the affinity media with the recombinant antigen. To deplete the antigen from the eluted sample, I MAC spin columns were utilized to bind the N-terminal His-tag of the antigens. The competitive elution method was applied both to a model system, and for the extraction of a native human target protein. In the model system the recombinant target protein BBC7 was spiked into a protein extract of human liver, whereas an endogenously expressed target protein, cTAGE5, was extracted from the liver extract directly. SDS-PAGE analysis and mass spectrometry confirmed affinity isolation of expected target proteins. More selective elution was obtained using the competitive procedure as compared to elution at low pH. Competitive elution has thus been shown to offer an effective approach for wide-scale pullout experiments where proteins and their interaction partners are to be studied.
  •  
4.
  • Larsson, Karin, et al. (författare)
  • Multiplexed PrEST immunization for high-throughput affinity proteomics
  • 2006
  • Ingår i: JIM - Journal of Immunological Methods. - : Elsevier BV. - 0022-1759 .- 1872-7905. ; 315:1-2, s. 110-120
  • Tidskriftsartikel (refereegranskat)abstract
    • Monospecific antibodies dfdfdfdf (msAbs) generated through antigen specific purification of polyclonal antisera are valuable tools in proteome analyses. However, proteome wide generation of msAbs would require extensive immunization programs. Therefore, it would be desirable to develop efficient immunization and purification methods to reduce the number of animals needed for such antibody-based research. Here we describe a multiplex immunization strategy for generation of msAbs towards recombinantly produced human protein fragments, denoted PrESTs. Antisera from rabbits immunized with a mixture of two, three, five and up to ten different PrESTs have been purified by a two-step immunoaffinity-based protocol and the efficiency of the purification method was analyzed using a two-color protein array concept. The obtained results showed that almost 80% of the animals immunized with antigens composed of two or three different PrESTs yielded antibodies recognizing all the included PrESTs. Furthermore, the modified two-step purification method effectively eliminated all background binding and produced pure antibody pools against individual PrESTs. This indicates that the multiplexed PrEST immunization strategy described here could become useful for high-throughput antibody-based proteomics initiatives, thus significantly reducing the number of animals needed in addition to providing a more cost-efficient method for production of msAbs.
  •  
5.
  • Löfblom, John, et al. (författare)
  • Optimization of electroporation-mediated transformation : Staphylococcus carnosus as model organism
  • 2007
  • Ingår i: Journal of Applied Microbiology. - : Oxford University Press (OUP). - 1364-5072 .- 1365-2672. ; 102:3, s. 736-747
  • Tidskriftsartikel (refereegranskat)abstract
    • The study was conducted with an aim to optimize the transformation efficiency of the Gram-positive bacterium Staphylococcus carnosus to a level that would enable the creation of cell surface displayed combinatorial protein libraries. Methods and Results: We have thoroughly investigated a number of different parameters for: (i) the preparation of electrocompetent cells; (ii) the treatment of cells before electroporation; (iii) the electroporation step itself; and (iv) improved recovery of transformed cells. Furthermore, a method for heat-induced inactivation of the host cell restriction system was devised to allow efficient transformation of the staphylococci with DNA prepared from other species, such as Escherichia coli. Previously described protocols for S. carnosus, giving transformation frequencies of approximately 10(2) transformants per transformation could be improved to reproducible procedures giving around 10(6) transformants for a single electroporation event, using plasmid DNA prepared from either S. carnosus or E. coli. The transformed staphylococcal cells were analysed using flow cytometry to verify that the entire cell population retained the introduced plasmid DNA and expressed the recombinant protein in a functional form on the cell surface at the same level as the positive control population. Conclusions: The results demonstrate that the transformation frequency for S. carnosus could be dramatically increased through optimization of the entire electroporation process, and that the restriction barrier for interspecies DNA transfer, could be inactivated by heat treatment of the cells prior to electroporation. Significance and Impact of the Study: The generation of large combinatorial protein libraries, displayed on the surface of S. carnosus can be envisioned in the near future, thus dramatically improving the selection compared with the traditional biopanning procedure used in phage display.
  •  
6.
  • Mulder, J., et al. (författare)
  • Systematically generated antibodies against human gene products : High throughput screening on sections from the rat nervous system
  • 2007
  • Ingår i: Neuroscience. - : Elsevier BV. - 0306-4522 .- 1873-7544. ; 146:4, s. 1689-1703
  • Tidskriftsartikel (refereegranskat)abstract
    • Completion of the Human Genome Project and recent developments in proteomics make it possible to systematically generate affinity reagents to a large portion of the proteome. Recently an antibody-based human protein atlas covering many organs including four areas of the brain has been released (www.proteinatlas.org). Due to the heterogeneity, size, and availability of tissue a more thorough analysis of the human brain is associated with considerable difficulties. Here we applied 120 antibodies raised against 112 human gene products to the smaller rat brain, a rodent animal model, where a single section represents a 'superarray' including many brain areas, and consequently allowing analysis of a huge number of cell types and their neurochemicals. Immunoreactive structures were seen in the investigated brain tissue after incubation with 56 antibodies (46.6%), of which 25 (20.8%) showed a clearly discrete staining pattern that was limited to certain areas, or subsets of brain cells. Bioinformatics, pre-adsorption tests and Western blot analysis were applied to identify non-specific antibodies. Eleven antibodies, including such raised against four 'ambiguous' proteins, passed all validation criteria, and the expression pattern and subcellular distribution of these proteins were studied in detail. To further explore the potential of the systematically generated antibodies, all 11 antibodies that passed validation were used to analyze the spinal cord and lumbar dorsal root ganglia after unilateral transection of the sciatic nerve. Discrete staining patterns were observed for four of the proteins, and injury-induced regulation was found for one of them. In conclusion, the study presented here suggests that a significant portion (10%) of the antibodies generated to a human protein can be used to analyze orthologues present in the rodent brain and to produce a protein-based atlas of the rodent brain. It is hoped that this type of antibody-based, high throughput screening of brain tissue from various rodent disease models will provide new information on the brain chemical neuroanatomy and insights in processes underlying neurological pathologies.
  •  
7.
  • Mulder, J., et al. (författare)
  • Tissue Profiling of the Mammalian Central Nervous System Using Human Antibody-based Proteomics
  • 2009
  • Ingår i: Molecular & Cellular Proteomics. - 1535-9476 .- 1535-9484. ; 8:7, s. 1612-1622
  • Tidskriftsartikel (refereegranskat)abstract
    • A need exists for mapping the protein profiles in the human brain both during normal and disease conditions. Here we studied 800 antibodies generated toward human proteins as part of a Human Protein Atlas program and investigated their suitability for detailed analysis of various levels of a rat brain using immuno-based methods. In this way, the parallel, rather limited analysis of the human brain, restricted to four brain areas (cerebellum, cerebral cortex, hippocampus, and lateral subventricular zone), could be extended in the rat model to 25 selected areas of the brain. Approximately 100 antibodies (12%) revealed a distinct staining pattern and passed validation of specificity using Western blot analysis. These antibodies were applied to coronal sections of the rat brain at 0.7-mm intervals covering the entire brain. We have now produced detailed protein distribution profiles for these antibodies and acquired over 640 images that form the basis of a publicly available portal of an antibody-based Rodent Brain Protein Atlas database (www.proteinatlas.org/rodentbrain). Because of the systematic selection of target genes, the majority of antibodies included in this database are generated against proteins that have not been studied in the brain before. Furthermore optimized tissue processing and colchicine treatment allow a high quality, more extended annotation and detailed analysis of subcellular distributions and protein dynamics. Molecular & Cellular Proteomics 8: 1612-1622, 2009.
  •  
8.
  • Nilsson, Peter, et al. (författare)
  • Towards a human proteome atlas : high-throughput generation of mono-specific antibodies for tissue profiling
  • 2005
  • Ingår i: Proteomics. - : Wiley. - 1615-9853 .- 1615-9861. ; 5:17, s. 4327-4337
  • Tidskriftsartikel (refereegranskat)abstract
    • A great need exists for the systematic generation of specific antibodies to explore the human proteome. Here, we show that antibodies specific to human proteins can be generated in a high-throughput manner involving stringent affinity purification using recombinant protein epitope signature tags (PrESTs) as immunogens and affinity-ligands. The specificity of the generated affinity reagents, here called mono-specific antibodies (msAb), were validated with a novel protein microarray assay. The success rate for 464 antibodies generated towards human proteins was more than 90% as judged by the protein array assay. The antibodies were used for parallel profiling of patient biopsies using tissue microarrays generated from 48 human tissues. Comparative analysis with well-characterized monoclonal antibodies showed identical or similar specificity and expression patterns. The results suggest that a comprehensive atlas containing extensive protein expression and subcellular localization data of the human proteome can be generated in an efficient manner with mono-specific antibodies.
  •  
9.
  • Paavilainen, Linda, et al. (författare)
  • Evaluation of monospecific antibodies : a comparison study with commercial analogs using immunohistochemistry on tissue microarrays
  • 2008
  • Ingår i: Applied immunohistochemistry & molecular morphology (Print). - 1541-2016 .- 1533-4058. ; 16:5, s. 493-502
  • Tidskriftsartikel (refereegranskat)abstract
    • Generation of monospecific antibodies (msAbs) (multiepitope) through affinity purification of polyclonal antisera is a plausible strategy for high-throughput production of affinity reagents toward large sets of proteins. These antibodies are generated using readily accessible gene sequence information from publicly available databases. The resulting antibodies have the potential to be used in a variety of assays, probing differentially presented and altered proteins with high sensitivity and specificity. In the present study, 48 msAbs were compared with corresponding commercial analogs. Immunohistochemical staining properties were evaluated on tissue microarrays, representing various normal human tissues from 144 different individuals. MsAbs showed similar immunostaining patterns as compared with corresponding commercial analogs in 44 out of totally 48 (92%) antibody pairs analyzed. Although only few antibody pairs showed major discrepancies, minor dissimilarities were frequently seen. Our results suggest that msAbs are reliable and valuable tools in antibody-based proteomics, enabling analysis of protein expression patterns in cells and tissues. High-throughput strategies employing such antibodies provide a consistent approach in the exploration of the human proteome.
  •  
10.
  • Pontén, Fredrik, et al. (författare)
  • A global view of protein expression in human cells, tissues, and organs
  • 2009
  • Ingår i: Molecular Systems Biology. - : EMBO. - 1744-4292 .- 1744-4292. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Defining the protein profiles of tissues and organs is critical to understanding the unique characteristics of the various cell types in the human body. In this study, we report on an anatomically comprehensive analysis of 4842 protein profiles in 48 human tissues and 45 human cell lines. A detailed analysis of over 2 million manually annotated, high-resolution, immunohistochemistry- based images showed a high fraction (>65%) of expressed proteins in most cells and tissues, with very few proteins (<2%) detected in any single cell type. Similarly, confocal microscopy in three human cell lines detected expression of more than 70% of the analyzed proteins. Despite this ubiquitous expression, hierarchical clustering analysis, based on global protein expression patterns, shows that the analyzed cells can be still subdivided into groups according to the current concepts of histology and cellular differentiation. This study suggests that tissue specificity is achieved by precise regulation of protein levels in space and time, and that different tissues in the body acquire their unique characteristics by controlling not which proteins are expressed but how much of each is produced. Molecular Systems Biology 5: 337; published online 22 December 2009; doi:10.1038/msb.2009.93
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy