SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Urrutia Cordero Pablo) ;mspu:(researchreview)"

Sökning: WFRF:(Urrutia Cordero Pablo) > Forskningsöversikt

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fehlinger, Lena, et al. (författare)
  • The ecological role of permanent ponds in Europe : a review of dietary linkages to terrestrial ecosystems via emerging insects
  • 2023
  • Ingår i: Inland Waters. - : Taylor & Francis. - 2044-2041 .- 2044-205X. ; 13:1, s. 30-46
  • Forskningsöversikt (refereegranskat)abstract
    • Permanent ponds are valuable freshwater systems and biodiversity hotspots. They provide diverse ecosystem services (ESs), including water quality improvement and supply, food provisioning, and biodiversity support, despite significant pressure from multiple anthropogenic stressors and the impacts of ongoing global change. However, ponds are largely overlooked in management plans and legislation, and ecological research has focused on large freshwater ecosystems, such as rivers or lakes. Protection of ponds is often insufficient or indirectly provided via associated habitats such as wetlands. This situation is likely exacerbated by the lack of a full-scale understanding of the importance of ponds. In this review, we provide a detailed overview of permanent ponds across Europe, including their usages and the biodiversity they support. By discussing the concepts of pondscape and metacommunity theory, we highlight the importance of connectivity among and between ponds and identified fluxes of emerging insects as another ES of ponds. Those insects are rich in essential nutrients such as polyunsaturated fatty acids (PUFAs), delivered through them to the terrestrial environment; however, the extent and impact of this ES remains largely unexplored. Several potential stressors, especially related to ongoing global change, that influence pond diversity and integrity are discussed. We provide our insights on future pond management. Adaptive measures, taking into account the pond system per se within the pondscape, are the most promising to mitigate the loss of natural ponds and restore and conserve natural small waterbodies as refuges and diversity hotspots in increasingly urbanized landscapes.
  •  
2.
  • Reinl, Kaitlin L., et al. (författare)
  • Blooms also like it cold
  • 2023
  • Ingår i: Limnology and Oceanography Letters. - : John Wiley & Sons. - 2378-2242. ; 8:4, s. 546-564
  • Forskningsöversikt (refereegranskat)abstract
    • Cyanobacterial blooms have substantial direct and indirect negative impacts on freshwater ecosystems including releasing toxins, blocking light needed by other organisms, and depleting oxygen. There is growing concern over the potential for climate change to promote cyanobacterial blooms, as the positive effects of increasing lake surface temperature on cyanobacterial growth are well documented in the literature; however, there is increasing evidence that cyanobacterial blooms are also being initiated and persisting in relatively cold-water temperatures (< 15 °C), including ice-covered conditions. In this work, we provide evidence of freshwater cold-water cyanobacterial blooms, review abiotic drivers and physiological adaptations leading to these blooms, offer a typology of these lesser-studied cold-water cyanobacterial blooms, and discuss their occurrence under changing climate conditions.
  •  
3.
  • Cunillera-Montcusí, David, et al. (författare)
  • Freshwater salinisation : a research agenda for a saltier world
  • 2022
  • Ingår i: Trends in Ecology and Evolution. - : Elsevier BV. - 0169-5347 .- 1872-8383. ; 37:5, s. 440-453
  • Forskningsöversikt (refereegranskat)abstract
    • The widespread salinisation of freshwater ecosystems poses a major threat to the biodiversity, functioning, and services that they provide. Human activities promote freshwater salinisation through multiple drivers (e.g., agriculture, resource extraction, urbanisation) that are amplified by climate change. Due to its complexity, we are still far from fully understanding the ecological and evolutionary consequences of freshwater salinisation. Here, we assess current research gaps and present a research agenda to guide future studies. We identified different gaps in taxonomic groups, levels of biological organisation, and geographic regions. We suggest focusing on global- and landscape-scale processes, functional approaches, genetic and molecular levels, and eco-evolutionary dynamics as key future avenues to predict the consequences of freshwater salinisation for ecosystems and human societies.
  •  
4.
  • Ger, Kemal Ali, et al. (författare)
  • The interaction between cyanobacteria and zooplankton in a more eutrophic world
  • 2016
  • Ingår i: Harmful Algae. - : Elsevier BV. - 1568-9883. ; 54, s. 128-144
  • Forskningsöversikt (refereegranskat)abstract
    • As blooms of cyanobacteria expand and intensify in freshwater systems globally, there is increasing interest in their ecological effects. In addition to being public health hazards, cyanobacteria have long been considered a poor quality food for key zooplankton grazers that link phytoplankton to higher trophic levels. While past laboratory studies have found negative effects of nutritional constraints and defensive traits (i.e., toxicity and colonial or filamentous morphology) on the fitness of large generalist grazers (i.e., Daphnia), cyanobacterial blooms often co-exist with high biomass of small-bodied zooplankton in nature. Indeed, recent studies highlight the remarkable diversity and flexibility in zooplankton responses to cyanobacterial prey. Reviewed here are results from a wide range of laboratory and field experiments examining the interaction of cyanobacteria and a diverse zooplankton taxa including cladocerans, copepods, and heterotrophic protists from temperate to tropical freshwater systems. This synthesis shows that longer exposure to cyanobacteria can shift zooplankton communities toward better-adapted species, select for more tolerant genotypes within a species, and induce traits within the lifetime of individual zooplankton. In turn, the function of bloom-dominated plankton ecosystems, the coupling between primary producers and grazers, the stability of blooms, and the potential to use top down biomanipulation for controlling cyanobacteria depend largely on the species, abundance, and traits of interacting cyanobacteria and zooplankton. Understanding the drivers and consequences of zooplankton traits, such as physiological detoxification and selective vs. generalist grazing behavior, are therefore of major importance for future studies. Ultimately, co-evolutionary dynamics between cyanobacteria and their grazers may emerge as a critical regulator of blooms.
  •  
5.
  • Stockwell, Jason D., et al. (författare)
  • Storm impacts on phytoplankton community dynamics in lakes
  • 2020
  • Ingår i: Global Change Biology. - : WILEY. - 1354-1013 .- 1365-2486. ; 26:5, s. 2756-2784
  • Forskningsöversikt (refereegranskat)abstract
    • In many regions across the globe, extreme weather events such as storms have increased in frequency, intensity, and duration due to climate change. Ecological theory predicts that such extreme events should have large impacts on ecosystem structure and function. High winds and precipitation associated with storms can affect lakes via short-term runoff events from watersheds and physical mixing of the water column. In addition, lakes connected to rivers and streams will also experience flushing due to high flow rates. Although we have a well-developed understanding of how wind and precipitation events can alter lake physical processes and some aspects of biogeochemical cycling, our mechanistic understanding of the emergent responses of phytoplankton communities is poor. Here we provide a comprehensive synthesis that identifies how storms interact with lake and watershed attributes and their antecedent conditions to generate changes in lake physical and chemical environments. Such changes can restructure phytoplankton communities and their dynamics, as well as result in altered ecological function (e.g., carbon, nutrient and energy cycling) in the short- and long-term. We summarize the current understanding of storm-induced phytoplankton dynamics, identify knowledge gaps with a systematic review of the literature, and suggest future research directions across a gradient of lake types and environmental conditions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy