SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vakili F.) "

Sökning: WFRF:(Vakili F.)

  • Resultat 1-10 av 27
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Adam, A, et al. (författare)
  • Abstracts from Hydrocephalus 2016.
  • 2017
  • Ingår i: Fluids and Barriers of the CNS. - : Springer Science and Business Media LLC. - 2045-8118. ; 14:Suppl 1
  • Tidskriftsartikel (refereegranskat)
  •  
4.
  • Tinetti, Giovanna, et al. (författare)
  • The EChO science case
  • 2015
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 40:2-3, s. 329-391
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune-all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10(-4) relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength coverage of at least 0.55 to 11 mu m with a goal of covering from 0.4 to 16 mu m. Only modest spectral resolving power is needed, with R similar to 300 for wavelengths less than 5 mu m and R similar to 30 for wavelengths greater than this. The transit spectroscopy technique means that no spatial resolution is required. A telescope collecting area of about 1 m(2) is sufficiently large to achieve the necessary spectro-photometric precision: for the Phase A study a 1.13 m(2) telescope, diffraction limited at 3 mu m has been adopted. Placing the satellite at L2 provides a cold and stable thermal environment as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. EChO has been conceived to achieve a single goal: exoplanet spectroscopy. The spectral coverage and signal-to-noise to be achieved by EChO, thanks to its high stability and dedicated design, would be a game changer by allowing atmospheric composition to be measured with unparalleled exactness: at least a factor 10 more precise and a factor 10 to 1000 more accurate than current observations. This would enable the detection of molecular abundances three orders of magnitude lower than currently possible and a fourfold increase from the handful of molecules detected to date. Combining these data with estimates of planetary bulk compositions from accurate measurements of their radii and masses would allow degeneracies associated with planetary interior modelling to be broken, giving unique insight into the interior structure and elemental abundances of these alien worlds. EChO would allow scientists to study exoplanets both as a population and as individuals. The mission can target super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300-3000 K) of F to M-type host stars. The EChO core science would be delivered by a three-tier survey. The EChO Chemical Census: This is a broad survey of a few-hundred exoplanets, which allows us to explore the spectroscopic and chemical diversity of the exoplanet population as a whole. The EChO Origin: This is a deep survey of a subsample of tens of exoplanets for which significantly higher signal to noise and spectral resolution spectra can be obtained to explain the origin of the exoplanet diversity (such as formation mechanisms, chemical processes, atmospheric escape). The EChO Rosetta Stones: This is an ultra-high accuracy survey targeting a subsample of select exoplanets. These will be the bright "benchmark" cases for which a large number of measurements would be taken to explore temporal variations, and to obtain two and three dimensional spatial information on the atmospheric conditions through eclipse-mapping techniques. If EChO were launched today, the exoplanets currently observed are sufficient to provide a large and diverse sample. The Chemical Census survey would consist of > 160 exoplanets with a range of planetary sizes, temperatures, orbital parameters and stellar host properties. Additionally, over the next 10 years, several new ground- and space-based transit photometric surveys and missions will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on finding bright, nearby systems. The current rapid rate of discovery would allow the target list to be further optimised in the years prior to EChO's launch and enable the atmospheric characterisation of hundreds of planets.
  •  
5.
  • Weigelt, G., et al. (författare)
  • VLTI-MATISSE chromatic aperture-synthesis imaging of eta Carinae's stellar wind across the Br alpha line Periastron passage observations in February 2020
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 652
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Eta Carinae is a highly eccentric, massive binary system (semimajor axis similar to 15.5 au) with powerful stellar winds and a phase-dependent wind-wind collision (WWC) zone. The primary star, eta Car A, is a luminous blue variable (LBV); the secondary, eta Car B, is a Wolf-Rayet or O star with a faster but less dense wind. Aperture-synthesis imaging allows us to study the mass loss from the enigmatic LBV eta Car. Understanding LBVs is a crucial step toward improving our knowledge about massive stars and their evolution. Aims. Our aim is to study the intensity distribution and kinematics of eta Car's WWC zone. Methods. Using the VLTI-MATISSE mid-infrared interferometry instrument, we perform Br alpha imaging of eta Car's distorted wind. Results. We present the first VLTI-MATISSE aperture-synthesis images of eta Car A's stellar windin several spectral channels distributed across the Br alpha 4.052 mu m line (spectral resolving power R similar to 960). Our observations were performed close to periastron passage in February 2020 (orbital phase similar to 14.0022). The reconstructed iso-velocity images show the dependence of the primary stellar wind on wavelength or line-of-sight (LOS) velocity with a spatial resolution of 6 mas (similar to 14 au). The radius of the faintest outer wind regions is similar to 26 mas (similar to 60 au). At several negative LOS velocities, the primary stellar wind is less extended to the northwest than in other directions. This asymmetry is most likely caused by the WWC. Therefore, we see both the velocity field of the undisturbed primary wind and the WWC cavity. In continuum spectral channels, the primary star wind is more compact than in line channels. A fit of the observed continuum visibilities with the visibilities of a stellar wind CMFGEN model (CMFGEN is an atmosphere code developed to model the spectra of a variety of objects) provides a full width at half maximum fit diameter of the primary stellar wind of 2.84 +/- 0.06 mas (6.54 +/- 0.14 au). We comparethe derived intensity distributions with the CMFGEN stellar wind model and hydrodynamic WWC models.
  •  
6.
  • Aglietta, M, et al. (författare)
  • The cosmic ray primary composition between 10(15) and 10(16) eV from Extensive Air Showers electromagnetic and TeV muon data
  • 2004
  • Ingår i: Astroparticle physics. - : Elsevier. - 0927-6505 .- 1873-2852. ; 20:6, s. 641-652
  • Tidskriftsartikel (refereegranskat)abstract
    • The cosmic ray primary composition in the energy range between 10(15) and 10(16) eV, i.e., around the "knee" of the primary spectrum, has been studied through the combined measurements of the EAS-TOP air shower array (2005 m a. s.l., 10(5) m(2) collecting area) and the MACRO underground detector (963 m.a.s.l., 3100 m w.e. of minimum rock overburden, 920 m(2) effective area) at the National Gran Sasso Laboratories. The used observables are the air shower size (N-c) measured by EAS-TOP and the muon number (N-mu) recorded by MACRO. The two detectors are separated on average by 1200 m of rock, and located at a respective zenith angle of about 30degrees. The energy threshold at the surface for muons reaching the MACRO depth is approximately 1.3 TeV. Such muons are produced in the early stages of the shower development and in a kinematic region quite different from the one relevant for the usual N-mu - N-e studies. The measurement leads to a primary composition becoming heavier at the knee of the primary spectrum, the knee itself resulting from the steepening of the spectrum of a primary light component (p, He) of Deltay = 0.7 +/- 0.4 at E-0 similar to 4 x 10(15) eV. The result confirms the ones reported from the observation of the low energy muons at the surface (typically in the GeV energy range), showing that the conclusions do not depend on the production region kinematics. Thus, the hadronic interaction model used (CORSIKA/QGSJET) provides consistent composition results from data related to secondaries produced in a rapidity region exceeding the central one. Such an evolution of the composition in the knee region supports the "standard" galactic acceleration/propagation models that imply rigidity dependent breaks of the different components.. and therefore breaks occurring at lower energies in the spectra of the light nuclei. (C) 2003 Elsevier B.V. All rights reserved.
  •  
7.
  • Aglietta, M, et al. (författare)
  • The cosmic ray proton, helium and CNO fluxes in the 100 TeV energy region from TeV muons and EAS atmospheric Cherenkov light observations of MACRO and EAS-TOP
  • 2004
  • Ingår i: Astroparticle physics. - : Elsevier. - 0927-6505 .- 1873-2852. ; 21:3, s. 223-240
  • Tidskriftsartikel (refereegranskat)abstract
    • The primary cosmic ray (CR) proton, helium and CNO fluxes in the energy range 80-300 TeV are studied at the National Gran Sasso Laboratories by means of EAS-TOP (Campo Imperatore, 2005 m a.s.l.) and MACRO (deep underground, 3100 m w.e., the surface energy threshold for a muon reaching the detector being E-mu(th) approximate to 1.3 TeV). The measurement is based on: (a) the selection of primaries based on their energy/nucleon (i.e., with energy/nucleon sufficient to produce a muon with energy larger than 1.3 TeV) and the reconstruction of the shower geometry by means of the muons recorded by MACRO in the deep underground laboratories; (b) the detection of the associated atmospheric Cherenkov light (C.l.) signals by means of the C.l. detector of EAS-TOP. The C.l. density at core distance r > 100 m is directly related to the total primary energy E-0. Proton and helium ("p + He") and proton, helium and CNO ("p + He + CNO") primaries are thus selected at E-0 approximate to 80 TeV, and at E-0 similar or equal to 250 TeV, respectively. Their flux is measured: J(p+He)(80 TeV) = (1.8 +/- 0.4) x 10(-6) m(-1)-s(-1) sr(-1) TeV-1, and J(p+He+CNO)(250 TeV) = (1.1 +/- 0.3) x 10(-7) m(-2)-s(-1) sr(-1) TeV-1, their relative weights being J(p+He)(J(p+He+CNO)) over bar (250 TeV) = 0.78 +/- 0.17. By using the measurements of the proton spectrum obtained from the direct experiments and hadron flux data in the atmosphere, we obtain for the relative weights of the three components at 250 TeV: J(p) : J(He) : J(CNO) = (0.20 +/- 0.08) : (0.58 +/- 0.19) : (0.22 +/- 0.17). This corresponds to the dominance of helium over proton primaries at 100-1000 TeV, and a possible non-negligible contribution from CNO. The lateral distribution of Cherenkov light in Extensive Air Showers (EASs), which is related to the rate of energy deposit of the primary in the atmosphere, is measured for a selected proton and helium primary beam, and good agreement is found when compared with the one calculated with the CORSIKA/QGSJET simulation model. (C) 2004 Elsevier B.V. All rights reserved.
  •  
8.
  • Ambrosio, M, et al. (författare)
  • Muon energy estimate through multiple scattering with the MACRO detector
  • 2002
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - 0168-9002 .- 1872-9576. ; 492:3, s. 376-386
  • Tidskriftsartikel (refereegranskat)abstract
    • Muon energy measurement represents an important issue for any experiment addressing neutrino-induced up-going muon studies. Since the neutrino oscillation probability depends on the neutrino energy, a measurement of the muon energy adds an important piece of information concerning the neutrino system. We show in this paper how the MACRO limited streamer tube system can be operated in drift mode by using the TDCs included in the QTPs, an electronics designed for magnetic monopole search. An improvement of the space resolution is obtained, through an analysis of the multiple scattering of muon tracks as they pass through our detector. This information can be used further to obtain an estimate of the energy of muons crossing the detector. Here we present the results of two dedicated tests, performed at CERN PS-T9 and SPS-X7 beam lines, to provide a full check of the electronics and to exploit the feasibility of such a multiple scattering analysis. We show that by using a neural network approach, we are able to reconstruct the muon energy for E-mu < 40 GeV. The test beam data provide an absolute energy calibration, which allows us to apply this method to MACRO data. (C) 2002 Elsevier Science B.V. All rights reserved.
  •  
9.
  • Bonnefoy, M., et al. (författare)
  • First light of the VLT planet finder SPHERE IV. Physical and chemical properties of the planets around HR8799
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 587
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The system of four planets discovered around the intermediate-mass star HR8799 offers a unique opportunity to test planet formation theories at large orbital radii and to probe the physics and chemistry at play in the atmospheres of self-luminous young (similar to 30 Myr) planets. We recently obtained new photometry of the four planets and low-resolution (R similar to 30) spectra of HR8799 d and e with the SPHERE instrument (Paper III).Aims. In this paper (Paper IV), we aim to use these spectra and available photometry to determine how they compare to known objects, what the planet physical properties are, and how their atmospheres work.Methods. We compare the available spectra, photometry, and spectral energy distribution (SED) of the planets to field dwarfs and young companions. In addition, we use the extinction from corundum, silicate (enstatite and forsterite), or iron grains likely to form in the atmosphere of the planets to try to better understand empirically the peculiarity of their spectrophotometric properties. To conclude, we use three sets of atmospheric models (BT-SETTL14, Cloud-AE60, Exo-REM) to determine which ingredients are critically needed in the models to represent the SED of the objects, and to constrain their atmospheric parameters (T-eff, log g, M/H).Results. We find that HR8799d and e properties are well reproduced by those of L6-L8 dusty dwarfs discovered in the field, among which some are candidate members of young nearby associations. No known object reproduces well the properties of planets b and c. Nevertheless, we find that the spectra and WISE photometry of peculiar and/or young early-T dwarfs reddened by submicron grains made of corundum, iron, enstatite, or forsterite successfully reproduce the SED of these planets. Our analysis confirms that only the Exo-REM models with thick clouds fit (within 2 sigma) the whole set of spectrophotometric datapoints available for HR8799 d and e for T-eff = 1200 K, log g in the range 3.0-4.5, and M/H = +0.5. The models still fail to reproduce the SED of HR8799c and b. The determination of the metallicity, log g, and cloud thickness are degenerate.Conclusions. Our empirical analysis and atmospheric modelling show that an enhanced content in dust and decreased CIA of H-2 is certainly responsible for the deviation of the properties of the planet with respect to field dwarfs. The analysis suggests in addition that HR8799c and b have later spectral types than the two other planets, and therefore could both have lower masses.
  •  
10.
  • Ambrosio, M, et al. (författare)
  • A combined analysis technique for the search for fast magnetic monopoles with the MACRO detector
  • 2002
  • Ingår i: Astroparticle physics. - : Elsevier. - 0927-6505 .- 1873-2852. ; 18:1, s. 27-41
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe a search method for fast moving (beta = v/c > 5 x 10(-3)) magnetic monopoles using simultaneously the scintillator, streamer tube and track-etch subdetectors of the MACRO apparatus. The first two subdetectors are used primarily for the identification of candidates while the track-etch one is used as the final tool for their rejection or confirmation. Using this technique, a first sample of more than two-years of data has been analyzed without any evidence of a magnetic monopole. We set a 90% CL upper limit to the local monopole flux of 1.5 x 10(-15) cm(-2) s(-1) sr(-1) in the velocity range 5 x 10(-3) less than or equal to beta less than or equal to 0.99 and for nucleon decay catalysis cross-section smaller than similar to1 mb (C) 2002 Elsevier Science B.V. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 27
Typ av publikation
tidskriftsartikel (26)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (26)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Bilokon, H. (16)
Chiarella, V. (16)
Kim, H. (16)
Sioli, M (16)
de Cataldo, G. (16)
Monteno, M. (16)
visa fler...
Marzari Chiesa, A. (16)
Montaruli, T. (16)
Katsavounidis, E. (16)
Becherini, Yvonne (16)
Favuzzi, C. (16)
Fusco, P. (16)
Giglietto, N. (16)
Loparco, F. (16)
Spinelli, P. (16)
Bellotti, R. (16)
Campana, D. (16)
Marini, A. (16)
Osteria, G. (16)
Ronga, F. (16)
Brigida, M. (16)
Kearns, E. (16)
Scholberg, K. (16)
Walter, C. W. (16)
Stone, J. L. (16)
Sulak, L. R. (16)
Battistoni, G (16)
Palamara, O. (16)
Cecchini, S. (16)
Giacomelli, G. (16)
Margiotta, A. (16)
Patrizii, L. (16)
Popa, V. (16)
Spurio, M. (16)
Bernardini, P. (16)
Steinberg, R (16)
Barbarino, G. C. (16)
Surdo, A. (16)
De Marzo, C. (16)
Ambrosio, M (16)
Antolini, R (16)
Baldini, A (16)
Barish, B C (16)
Bemporad, C (16)
Bower, C (16)
Carboni, M (16)
Cei, F (16)
Choudhary, B C (16)
Coutu, S (16)
Dekhissi, H (16)
visa färre...
Lärosäte
Linnéuniversitetet (16)
Uppsala universitet (4)
Stockholms universitet (4)
Karolinska Institutet (3)
Göteborgs universitet (2)
Luleå tekniska universitet (1)
visa fler...
Lunds universitet (1)
Malmö universitet (1)
Chalmers tekniska högskola (1)
Högskolan Dalarna (1)
visa färre...
Språk
Engelska (27)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (22)
Medicin och hälsovetenskap (3)
Teknik (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy