SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vandenbussche G) ;pers:(Barlow M. J.)"

Sökning: WFRF:(Vandenbussche G) > Barlow M. J.

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Greaves, J. S., et al. (författare)
  • Extreme Conditions in a Close Analog to the Young Solar System: Herschel Observations of ∈ Eridani
  • 2014
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 791:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Far-infrared Herschel images of the is an element of Eridani system, seen at a fifth of the Sun's present age, resolve two belts of debris emission. Fits to the 160 mu m PACS image yield radial spans for these belts of 12-16 and 54-68 AU. The south end of the outer belt is approximate to 10% brighter than the north end in the PACS+SPIRE images at 160, 250, and 350 mu m, indicating a pericenter glow attributable to a planet "c" From this asymmetry and an upper bound on the offset of the belt center, this second planet should be mildly eccentric (e(c) approximate to 0.03-0.3). Compared to the asteroid and Kuiper Belts of the young Sun, the is an element of Eri belts are intermediate in brightness and more similar to each other, with up to 20 km sized collisional fragments in the inner belt totaling approximate to 5% of an Earth mass. This reservoir may feed the hot dust close to the star and could send many impactors through the Habitable Zone, especially if it is being perturbed by the suspected planet is an element of Eri b, at semi-major axis approximate to 3 AU.
  •  
2.
  • Greaves, J. S., et al. (författare)
  • EXTREME CONDITIONS IN A CLOSE ANALOG TO THE YOUNG SOLAR SYSTEM : HERSCHEL OBSERVATIONS OF is an element of ERIDANI
  • 2014
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 791:1, s. L11-
  • Tidskriftsartikel (refereegranskat)abstract
    • Far-infrared Herschel images of the is an element of Eridani system, seen at a fifth of the Sun's present age, resolve two belts of debris emission. Fits to the 160 mu m PACS image yield radial spans for these belts of 12-16 and 54-68 AU. The south end of the outer belt is approximate to 10% brighter than the north end in the PACS+SPIRE images at 160, 250, and 350 mu m, indicating a pericenter glow attributable to a planet c From this asymmetry and an upper bound on the offset of the belt center, this second planet should be mildly eccentric (e(c) approximate to 0.03-0.3). Compared to the asteroid and Kuiper Belts of the young Sun, the is an element of Eri belts are intermediate in brightness and more similar to each other, with up to 20 km sized collisional fragments in the inner belt totaling approximate to 5% of an Earth mass. This reservoir may feed the hot dust close to the star and could send many impactors through the Habitable Zone, especially if it is being perturbed by the suspected planet is an element of Eri b, at semi-major axis approximate to 3 AU.
  •  
3.
  • Groenewegen, M. A. T., et al. (författare)
  • MESS (Mass-loss of Evolved StarS), a Herschel key program
  • 2011
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 526, s. A162-
  • Tidskriftsartikel (refereegranskat)abstract
    • MESS (Mass-loss of Evolved StarS) is a guaranteed time key program that uses the PACS and SPIRE instruments on board the Herschel space observatory to observe a representative sample of evolved stars, that include asymptotic giant branch (AGB) and post-AGB stars, planetary nebulae and red supergiants, as well as luminous blue variables, Wolf-Rayet stars and supernova remnants. In total, of order 150 objects are observed in imaging and about 50 objects in spectroscopy. This paper describes the target selection and target list, and the observing strategy. Key science projects are described, and illustrated using results obtained during Herschel's science demonstration phase. Aperture photometry is given for the 70 AGB and post-AGB stars observed up to October 17, 2010, which constitutes the largest single uniform database of far-IR and sub-mm fluxes for late-type stars.
  •  
4.
  • van Hoof, P. A. M., et al. (författare)
  • Herschel images of NGC 6720 : H-2 formation on dust grains
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L137-
  • Tidskriftsartikel (refereegranskat)abstract
    • Herschel PACS and SPIRE images have been obtained of NGC 6720 (the Ring nebula). This is an evolved planetary nebula with a central star that is currently on the cooling track, due to which the outer parts of the nebula are recombining. From the PACS and SPIRE images we conclude that there is a striking resemblance between the dust distribution and the H-2 emission, which appears to be observational evidence that H-2 forms on grain surfaces. We have developed a photoionization model of the nebula with the Cloudy code which we used to determine the physical conditions of the dust and investigate possible formation scenarios for the H-2. We conclude that the most plausible scenario is that the H-2 resides in high density knots which were formed after the recombination of the gas started when the central star entered the cooling track. Hydrodynamical instabilities due to the unusually low temperature of the recombining gas are proposed as a mechanism for forming the knots. H-2 formation in the knots is expected to be substantial after the central star underwent a strong drop in luminosity about one to two thousand years ago, and may still be ongoing at this moment, depending on the density of the knots and the properties of the grains in the knots.
  •  
5.
  • Acke, B., et al. (författare)
  • Herschel images of Fomalhaut An extrasolar Kuiper belt at the height of its dynamical activity
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 540, s. Article Number: A125 -
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Fomalhaut is a young (2 +/- 1 x 10(8) years), nearby (7.7 pc), 2 M-circle dot star that is suspected to harbor an infant planetary system, interspersed with one or more belts of dusty debris. Aims. We present far-infrared images obtained with the Herschel Space Observatory with an angular resolution between 5.7 '' and 36.7 '' at wavelengths between 70 mu m and 500 mu m. The images show the main debris belt in great detail. Even at high spatial resolution, the belt appears smooth. The region in between the belt and the central star is not devoid of material; thermal emission is observed here as well. Also at the location of the star, excess emission is detected. We aim to construct a consistent image of the Fomalhaut system. Methods. We use a dynamical model together with radiative-transfer tools to derive the parameters of the debris disk. We include detailed models of the interaction of the dust grains with radiation, for both the radiation pressure and the temperature determination. Comparing these models to the spatially resolved temperature information contained in the images allows us to place strong constraints on the presence of grains that will be blown out of the system by radiation pressure. We use this to derive the dynamical parameters of the system. Results. The appearance of the belt points toward a remarkably active system in which dust grains are produced at a very high rate by a collisional cascade in a narrow region filled with dynamically excited planetesimals. Dust particles with sizes below the blow-out size are abundantly present. The equivalent of 2000 one-km-sized comets are destroyed every day, out of a cometary reservoir amounting to 110 Earth masses. From comparison of their scattering and thermal properties, we find evidence that the dust grains are fluffy aggregates, which indicates a cometary origin. The excess emission at the location of the star may be produced by hot dust with a range of temperatures, but may also be due to gaseous free-free emission from a stellar wind.
  •  
6.
  • Brandeker, Alexis, et al. (författare)
  • Herschel detects oxygen in the beta Pictoris debris disk
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 591
  • Tidskriftsartikel (refereegranskat)abstract
    • The young star beta Pictoris is well known for its dusty debris disk produced through collisional grinding of planetesimals, kilometre-sized bodies in orbit around the star. In addition to dust, small amounts of gas are also known to orbit the star; this gas is likely the result of vaporisation of violently colliding dust grains. The disk is seen edge on and from previous absorption spectroscopy we know that the gas is very rich in carbon relative to other elements. The oxygen content has been more difficult to assess, however, with early estimates finding very little oxygen in the gas at a C/O ratio that is 20x higher than the cosmic value. A C/O ratio that high is difficult to explain and would have far-reaching consequences for planet formation. Here we report on observations by the far-infrared space telescope Herschel, using PACS, of emission lines from ionised carbon and neutral oxygen. The detected emission from C+ is consistent with that previously reported observed by the HIFI instrument on Herschel, while the emission from O is hard to explain without assuming a higher density region in the disk, perhaps in the shape of a clump or a dense torus required to sufficiently excite the O atoms. A possible scenario is that the C/O gas is produced by the same process responsible for the CO clump recently observed by the Atacama Large Millimeter/submillimeter Array in the disk and that the redistribution of the gas takes longer than previously assumed. A more detailed estimate of the C/O ratio and the mass of O will have to await better constraints on the C/O gas spatial distribution.
  •  
7.
  • Cernicharo, J., et al. (författare)
  • Detection of anhydrous hydrochloric acid, HCl, in IRC+10216 with the Herschel SPIRE and PACS spectrometers Detection of HCI in IRC+10216
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L136-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the detection of anhydrous hydrochloric acid (hydrogen chlorine, HCl) in the carbon-rich star IRC+10216 using the spectroscopic facilities onboard the Herschel satellite. Lines from J = 1-0 up to J = 7-6 have been detected. From the observed intensities, we conclude that HCl is produced in the innermost layers of the circumstellar envelope with an abundance relative to H-2 of 5 x 10(-8) and extends until the molecules reach its photodissociation zone. Upper limits to the column densities of AlH, MgH, CaH, CuH, KH, NaH, FeH, and other diatomic hydrides have also been obtained.
  •  
8.
  • de Vries, B. L., et al. (författare)
  • Comet-like mineralogy of olivine crystals in an extrasolar proto-Kuiper belt
  • 2012
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 490:7418, s. 74-76
  • Tidskriftsartikel (refereegranskat)abstract
    • Some planetary systems harbour debris disks containing planetesimals such as asteroids and comets(1). Collisions between such bodies produce small dust particles(2), the spectral features of which reveal their composition and, hence, that of their parent bodies. A measurement of the composition of olivine crystals (Mg2-2xFe2xSiO4) has been done for the protoplanetary disk HD 100546 (refs 3, 4) and for olivine crystals in the warm inner parts of planetary systems. The latter compares well with the iron-rich olivine in asteroids(5,6) (x approximate to 0.29). In the cold outskirts of the beta Pictoris system, an analogue to the young Solar System, olivine crystals were detected(7) but their composition remained undetermined, leaving unknown how the composition of the bulk of Solar System cometary olivine grains compares with that of extrasolar comets(8,9). Here we report the detection of the 69-micrometre-wavelength band of olivine crystals in the spectrum of beta Pictoris. Because the disk is optically thin, we can associate the crystals with an extrasolar proto-Kuiper belt a distance of 15-45 astronomical units from the star (one astronomical unit is the Sun-Earth distance), determine their magnesium-rich composition (x = 0.01 +/- 0.001) and show that they make up 3.6 +/- 1.0 per cent of the total dust mass. These values are strikingly similar to those for the dust emitted by the most primitive comets in the Solar System(8-10), even though beta Pictoris is more massive and more luminous and has a different planetary system architecture.
  •  
9.
  • Decin, L., et al. (författare)
  • Silicon in the dust formation zone of IRC+10216
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L143-
  • Tidskriftsartikel (refereegranskat)abstract
    • The interstellar medium is enriched primarily by matter ejected from evolved low and intermediate mass stars. The outflows from these stars create a circumstellar envelope in which a rich gas-phase and dust-nucleation chemistry takes place. We observed the nearest carbon-rich evolved star, IRC + 10216, using the PACS (55-210 mu m) and SPIRE (194-672 mu m) spectrometers on board Herschel. We find several tens of lines from SiS and SiO, including lines from the v = 1 vibrational level. For SiS these transitions range up to J = 124-123, corresponding to energies around 6700 K, while the highest detectable transition is J = 90-89 for SiO, which corresponds to an energy around 8400 K. Both species trace the dust formation zone of IRC + 10216, and the broad energy ranges involved in their detected transitions permit us to derive the physical properties of the gas and the particular zone in which each species has been formed. This allows us to check the accuracy of chemical thermodynamical equilibrium models and the suggested depletion of SiS and SiO due to accretion onto dust grains.
  •  
10.
  • Decin, L., et al. (författare)
  • Warm water vapour in the sooty outflow from a luminous carbon star
  • 2010
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 467:7311, s. 64-67
  • Tidskriftsartikel (refereegranskat)abstract
    • The detection(1) of circumstellar water vapour around the ageing carbon star IRC + 10216 challenged the current understanding of chemistry in old stars, because water was predicted(2) to be almost absent in carbon-rich stars. Several explanations for the water were postulated, including the vaporization of icy bodies (comets or dwarf planets) in orbit around the star(1), grain surface reactions(3), and photochemistry in the outer circumstellar envelope(4). With a single water line detected so far from this one carbon-rich evolved star, it is difficult to discriminate between the different mechanisms proposed. Here we report the detection of dozens of water vapour lines in the far-infrared and sub-millimetre spectrum of IRC + 10216 using the Herschel satellite(5). This includes some high-excitation lines with energies corresponding to similar to 1,000 K, which can be explained only if water is present in the warm inner sooty region of the envelope. A plausible explanation for the warm water appears to be the penetration of ultraviolet photons deep into a clumpy circumstellar envelope. This mechanism also triggers the formation of other molecules, such as ammonia, whose observed abundances(6) are much higher than hitherto predicted(7).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy