SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vandenput Liesbeth) "

Sökning: WFRF:(Vandenput Liesbeth)

Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Graff, Mariaelisa, et al. (författare)
  • Genome-wide physical activity interactions in adiposity. A meta-analysis of 200,452 adults
  • 2017
  • Ingår i: PLoS Genet. - 1553-7404. ; 13:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Physical activity (PA) may modify the genetic effects that give rise to increased risk of obesity. To identify adiposity loci whose effects are modified by PA, we performed genome-wide interaction meta-analyses of BMI and BMI-adjusted waist circumference and waist-hip ratio from up to 200,452 adults of European (n = 180,423) or other ancestry (n = 20,029). We standardized PA by categorizing it into a dichotomous variable where, on average, 23% of participants were categorized as inactive and 77% as physically active. While we replicate the interaction with PA for the strongest known obesity-risk locus in the FTO gene, of which the effect is attenuated by ~30% in physically active individuals compared to inactive individuals, we do not identify additional loci that are sensitive to PA. In additional genome-wide meta-analyses adjusting for PA and interaction with PA, we identify 11 novel adiposity loci, suggesting that accounting for PA or other environmental factors that contribute to variation in adiposity may facilitate gene discovery.
2.
  • Jiang, X., et al. (författare)
  • Genome-wide association study in 79,366 European-ancestry individuals informs the genetic architecture of 25-hydroxyvitamin D levels
  • 2018
  • Ingår i: Nature Communications. - 2041-1723. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Vitamin D is a steroid hormone precursor that is associated with a range of human traits and diseases. Previous GWAS of serum 25-hydroxyvitamin D concentrations have identified four genome-wide significant loci (GC, NADSYN1/DHCR7, CYP2R1, CYP24A1). In this study, we expand the previous SUNLIGHT Consortium GWAS discovery sample size from 16,125 to 79,366 (all European descent). This larger GWAS yields two additional loci harboring genome-wide significant variants (P = 4.7x10(-9) at rs8018720 in SEC23A, and P = 1.9x10(-14) at rs10745742 in AMDHD1). The overall estimate of heritability of 25-hydroxyvitamin D serum concentrations attributable to GWAS common SNPs is 7.5%, with statistically significant loci explaining 38% of this total. Further investigation identifies signal enrichment in immune and hematopoietic tissues, and clustering with autoimmune diseases in cell-type-specific analysis. Larger studies are required to identify additional common SNPs, and to explore the role of rare or structural variants and gene-gene interactions in the heritability of circulating 25-hydroxyvitamin D levels.
  •  
3.
  • Justice, A. E., et al. (författare)
  • Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits
  • 2017
  • Ingår i: Nature Communications. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Few genome-wide association studies (GWAS) account for environmental exposures, like smoking, potentially impacting the overall trait variance when investigating the genetic contribution to obesity-related traits. Here, we use GWAS data from 51,080 current smokers and 190,178 nonsmokers (87% European descent) to identify loci influencing BMI and central adiposity, measured as waist circumference and waist-to-hip ratio both adjusted for BMI. We identify 23 novel genetic loci, and 9 loci with convincing evidence of gene-smoking interaction (GxSMK) on obesity-related traits. We show consistent direction of effect for all identified loci and significance for 18 novel and for 5 interaction loci in an independent study sample. These loci highlight novel biological functions, including response to oxidative stress, addictive behaviour, and regulatory functions emphasizing the importance of accounting for environment in genetic analyses. Our results suggest that tobacco smoking may alter the genetic susceptibility to overall adiposity and body fat distribution.
4.
  • Kilpelainen, Tuomas O., et al. (författare)
  • Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile.
  • 2011
  • Ingår i: Nature genetics. - 1546-1718. ; 43:8, s. 753-60
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies have identified 32 loci influencing body mass index, but this measure does not distinguish lean from fat mass. To identify adiposity loci, we meta-analyzed associations between similar to 2.5 million SNPs and body fat percentage from 36,626 individuals and followed up the 14 most significant (P < 10(-6)) independent loci in 39,576 individuals. We confirmed a previously established adiposity locus in FTO (P = 3 x 10(-26)) and identified two new loci associated with body fat percentage, one near IRS1 (P = 4 x 10(-11)) and one near SPRY2 (P = 3 x 10(-8)). Both loci contain genes with potential links to adipocyte physiology. Notably, the body-fat-decreasing allele near IRS1 is associated with decreased IRS1 expression and with an impaired metabolic profile, including an increased visceral to subcutaneous fat ratio, insulin resistance, dyslipidemia, risk of diabetes and coronary artery disease and decreased adiponectin levels. Our findings provide new insights into adiposity and insulin resistance.
  •  
5.
  • Nethander, Maria, 1980-, et al. (författare)
  • Evidence of a Causal Effect of Estradiol on Fracture Risk in Men.
  • 2019
  • Ingår i: The Journal of clinical endocrinology and metabolism. - 1945-7197. ; 104:2, s. 433-442
  • Tidskriftsartikel (refereegranskat)abstract
    • Observational studies indicate that serum estradiol (E2) is more strongly associated with bone mineral density (BMD) than serum testosterone (T) while both E2 and T associate with fracture risk in men.To evaluate the possible causal effect of serum E2 and T on fracture risk in men.A Mendelian Randomization (MR) approach was undertaken using individual-level data of genotypes, BMD as estimated by quantitative ultrasound of the heel (eBMD), fractures (n=17,650), and relevant covariates of 175,583 unrelated men of European origin from the UK Biobank. The genetic instruments for serum E2 and T were taken from the most recent large scale GWAS meta-analyses on these hormones in men.MR analyses demonstrated a causal effect of serum E2 on eBMD and fracture risk. A 1 SD (or 9.6 pg/ml) genetically instrumented decrease in serum E2 was associated with a 0.38 SD decrease in eBMD (p-value 9.7 x 10-74) and an increased risk of any fracture (OR 1.35, 95% CI, 1.18-1.55), non-vertebral major osteoporotic fractures (OR 1.75, 95% CI, 1.35-2.27) and wrist fractures (OR 2.27, 95% CI, 1.62-3.16). These causal effects of serum E2 on fracture risk were robust in sensitivity analyses and remained unchanged in stratified analyses for age, BMI, eBMD, smoking status, and physical activity. MR analyses revealed no evidence of a causal effect of T levels on fracture risk.Our findings provide the first evidence of a robust causal effect of serum E2, but not T, on fracture risk in men.
6.
  • Nilsson, Maria E., et al. (författare)
  • Measurement of a comprehensive sex steroid profile in rodent serum by high-sensitive gas chromatography-tandem mass spectrometry.
  • 2015
  • Ingår i: Endocrinology. - 1945-7170. ; 156:7, s. 2492-502
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate measurement of sex steroid concentrations in rodent serum is essential to evaluate mouse and rat models for sex steroid-related disorders. The aim of the present study was to develop a sensitive and specific gas chromatography-tandem mass spectrometry (GC-MS/MS) method to assess a comprehensive sex steroid profile in rodent serum. A major effort was invested in reaching an exceptionally high sensitivity for measuring serum estradiol concentrations. We established a GC-MS/MS assay with a lower limit of detection for estradiol, estrone, testosterone, dihydrotestosterone, progesterone, androstenedione and dehydroepiandrosterone of 0.3, 0.5, 4, 1.6, 8, 4 and 50 pg/ml, respectively, while the corresponding values for the lower limit of quantification were 0.5, 0.5, 8, 2.5, 74, 12 and 400 pg/ml, respectively. Calibration curves were linear, intra- and inter-assay CVs were low and accuracy was excellent for all analytes. The established assay was used to accurately measure a comprehensive sex steroid profile in female rats and mice according to estrus cycle phase. In addition, we characterized the impact of age, sex, gonadectomy, and estradiol treatment on serum concentrations of these sex hormones in mice. In conclusion, we have established a highly sensitive and specific GC-MS/MS method to assess a comprehensive sex steroid profile in rodent serum in a single run. This GC-MS/MS assay has, to the best of our knowledge, the best detectability reported for estradiol. Our method therefore represents an ideal tool to characterize sex steroid metabolism in a variety of sex steroid-related rodent models and in human samples with low estradiol levels.
7.
  • Swanson, Charlotte, 1975-, et al. (författare)
  • Sex steroid levels and cortical bone size in young men are associated with a uridine diphosphate glucuronosyltransferase 2B7 polymorphism (H268Y).
  • 2007
  • Ingår i: The Journal of clinical endocrinology and metabolism. - 0021-972X. ; 92:9, s. 3697-704
  • Tidskriftsartikel (refereegranskat)abstract
    • CONTEXT: Sex steroids are involved in the regulation of pubertal cortical bone expansion in males. In vitro studies have indicated that the enzyme uridine diphosphate glucuronosyltransferase (UGT) 2B7 has the capacity to glucuronidate sex steroids and their metabolites. OBJECTIVE: Our objective was to determine the impact of the H(268)Y polymorphism in the UGT2B7 gene on interindividual variation of serum levels of sex steroids and cortical bone dimensions. PARTICIPANTS: The population-based cohort Gothenburg Osteoporosis and Obesity Determinants study consists of 1068 young adult Swedish men (age 18.9 yr). MAIN OUTCOME MEASURES: Serum levels of sex steroids and the three major glucuronidated androgen metabolites, androstane-3alpha,17beta-diol-17glucuronide, androstane-3alpha,17beta-diol-3glucuronide, and androsterone-glucuronide, were analyzed. Cortical and trabecular volumetric bone mineral density and cortical bone size were measured by peripheral quantitative computer tomography. RESULTS: Serum levels of testosterone (YY 9% over HH; P < 0.01), dihydrotestosterone (YY 10% over HH; P < 0.01), and estradiol (YY 8% over HH; P < 0.01) were associated with the UGT2B7 H(268)Y polymorphism. The polymorphism was associated with androstane-3alpha,17beta-diol-17glucuronide and androstane-3alpha,17beta-diol-3glucuronide (P < 0.01), but not with androsterone-glucuronide serum levels. In addition, the UGT2B7 H(268)Y polymorphism was an independent predictor of cortical bone size, reflected by periosteal circumference and cortical moment of inertia (P < 0.01), in both the weight-bearing tibia and nonweight-bearing radius. CONCLUSIONS: The UGT2B7 H(268)Y polymorphism is independently associated with cortical bone size and serum sex steroid levels in young adult men. Subjects homozygous for the Y allele had higher serum testosterone and larger cortical bone size than subjects homozygous for the H allele. However, the underlying mechanism behind these associations is unknown and has to be studied further.
  •  
8.
  •  
9.
  • Allen, Hana Lango, et al. (författare)
  • Hundreds of variants clustered in genomic loci and biological pathways affect human height.
  • 2010
  • Ingår i: Nature. - 1476-4687. ; 467:7317, s. 832-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits(1), but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait(2,3). The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P<0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
  •  
10.
  • Allen, Hana Lango, et al. (författare)
  • Hundreds of variants clustered in genomic loci and biological pathways affect human height
  • 2010
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 467:7317, s. 832-838
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits(1), but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait(2,3). The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P&lt;0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.</p>
  •  
Skapa referenser, mejla, bekava och länka
Åtkomst
fritt online (48)
Typ av publikation
tidskriftsartikel (155)
bokkapitel (2)
forskningsöversikt (2)
konferensbidrag (1)
Typ av innehåll
refereegranskat (152)
övrigt vetenskapligt (9)
Författare/redaktör
Vandenput, Liesbeth (101)
Ohlsson, Claes (98)
Lorentzon, Mattias, (66)
Karlsson, Magnus, (52)
Ohlsson, Claes, 1965 ... (51)
Hofman, Albert (49)
visa fler...
Rivadeneira, Fernand ... (49)
Harris, Tamara B. (47)
Eriksson, Joel, (46)
Uitterlinden, Andre ... (43)
Zillikens, M. Carola (38)
Ljunggren, Östen, (38)
Mellström, Dan, (35)
Luan, Jian'an (35)
Gudnason, Vilmundur (34)
Feitosa, Mary F. (34)
Mellstrom, Dan (34)
Van Duijn, Cornelia ... (32)
Mangino, Massimo (32)
Hayward, Caroline (32)
Wilson, James F. (32)
Amin, Najaf (31)
Campbell, Harry (31)
Teumer, Alexander (30)
Wareham, Nicholas J (30)
Cupples, L. Adrienne (30)
Chasman, Daniel I., (29)
Loos, Ruth J. F. (29)
Lind, Lars, (28)
Mellström, Dan, 1945 ... (28)
Estrada, Karol (28)
Thorleifsson, Gudmar (28)
Liu, Yongmei (28)
Psaty, Bruce M. (27)
Salomaa, Veikko (27)
Gieger, Christian (27)
Zhao, Jing Hua (27)
Lehtimaki, Terho (27)
Karlsson, Magnus K., (26)
Kuusisto, Johanna, (26)
Langenberg, Claudia (26)
Morris, Andrew P. (26)
Borecki, Ingrid B (26)
Soranzo, Nicole (25)
Stancáková, Alena, (25)
Rose, Lynda M (25)
Perola, Markus (25)
Eriksson, Johan G. (25)
Jula, Antti (25)
Stefansson, Kari (25)
visa färre...
Lärosäte
Göteborgs universitet (101)
Lunds universitet (50)
Uppsala universitet (43)
Karolinska Institutet (18)
Umeå universitet (14)
Chalmers tekniska högskola (1)
Språk
Engelska (160)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (158)
Naturvetenskap (5)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy