SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vanderschueren Dirk) ;pers:(Ohlsson Claes 1965)"

Sökning: WFRF:(Vanderschueren Dirk) > Ohlsson Claes 1965

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Eriksson, Anna-Lena, 1971, et al. (författare)
  • Genetic Determinants of Circulating Estrogen Levels and Evidence of a Causal Effect of Estradiol on Bone Density in Men.
  • 2018
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : The Endocrine Society. - 0021-972X .- 1945-7197. ; 103:3, s. 991-1004
  • Tidskriftsartikel (refereegranskat)abstract
    • Serum estradiol (E2) and estrone (E1) levels exhibit substantial heritability.To investigate the genetic regulation of serum E2 and E1 in men.Genome-wide association study in 11,097 men of European origin from nine epidemiological cohorts.Genetic determinants of serum E2 and E1 levels.Variants in/near CYP19A1 demonstrated the strongest evidence for association with E2, resolving to three independent signals. Two additional independent signals were found on the X chromosome; FAMily with sequence similarity 9, member B (FAM9B), rs5934505 (P = 3.4 × 10-8) and Xq27.3, rs5951794 (P = 3.1 × 10-10). E1 signals were found in CYP19A1 (rs2899472, P = 5.5 × 10-23), in Tripartite motif containing 4 (TRIM4; rs17277546, P = 5.8 × 10-14), and CYP11B1/B2 (rs10093796, P = 1.2 × 10-8). E2 signals in CYP19A1 and FAM9B were associated with bone mineral density (BMD). Mendelian randomization analysis suggested a causal effect of serum E2 on BMD in men. A 1 pg/mL genetically increased E2 was associated with a 0.048 standard deviation increase in lumbar spine BMD (P = 2.8 × 10-12). In men and women combined, CYP19A1 alleles associated with higher E2 levels were associated with lower degrees of insulin resistance.Our findings confirm that CYP19A1 is an important genetic regulator of E2 and E1 levels and strengthen the causal importance of E2 for bone health in men. We also report two independent loci on the X-chromosome for E2, and one locus each in TRIM4 and CYP11B1/B2, for E1.
  •  
2.
  • Lagerquist, Marie, et al. (författare)
  • Androgens and the skeleton.
  • 2005
  • Ingår i: Minerva endocrinologica. - 0391-1977. ; 30:1, s. 15-25
  • Tidskriftsartikel (refereegranskat)abstract
    • Loss of estrogens or androgens causes bone loss by increasing the rate of bone remodeling, and also causes an imbalance between resorption and formation by prolonging the lifespan of osteoclasts and shortening the lifespan of osteoblasts. Conversely, treatment with androgens, as well as estrogens, maintains cancellous bone mass and integrity, regardless of age or sex. Both androgens, via the androgen receptor (AR), and estrogens, via the estrogen receptors (ERs) can exert these effects, but the relative contribution of these 2 pathways remains uncertain. Androgens, like estrogens, stimulate endochondral bone formation at the start of puberty, whereas they induce epiphyseal closure at the end of puberty, thus, they have a biphasic effect. Androgen action on the growth plate is, however, clearly mediated via aromatization into estrogens and interaction with ER alpha. Androgens increase, while estrogens decrease radial growth. This differential effect of the sex steroids may be important because bone strength in males seems to be determined by higher periosteal bone formation and, therefore, greater bone dimensions. Experiments in mice suggest that both the AR and ER alpha pathways are involved in androgen action on radial bone growth. ER beta may mediate growth-limiting effects of estrogens in the female but does not seem to be involved in the regulation of bone size in males. In conclusion, androgens may protect men against osteoporosis via maintenance of cancellous bone mass and expansion of cortical bone. This androgen action on bone is mediated by the AR and ER alpha.
  •  
3.
  • Marriott, Ross J, et al. (författare)
  • Factors Associated With Circulating Sex Hormones in Men : Individual Participant Data Meta-analyses.
  • 2023
  • Ingår i: Annals of internal medicine. - 1539-3704. ; 176:9, s. 1221-1234
  • Forskningsöversikt (refereegranskat)abstract
    • Various factors modulate circulating testosterone in men, affecting interpretation of testosterone measurements.To clarify factors associated with variations in sex hormone concentrations.Systematic literature searches (to July 2019).Prospective cohort studies of community-dwelling men with total testosterone measured using mass spectrometry.Individual participant data (IPD) (9 studies; n = 21 074) and aggregate data (2 studies; n = 4075). Sociodemographic, lifestyle, and health factors and concentrations of total testosterone, sex hormone-binding globulin (SHBG), luteinizing hormone (LH), dihydrotestosterone, and estradiol were extracted.Two-stage random-effects IPD meta-analyses found a nonlinear association of testosterone with age, with negligible change among men aged 17 to 70 years (change per SD increase about the midpoint, -0.27 nmol/L [-7.8 ng/dL] [CI, -0.71 to 0.18 nmol/L {-20.5 to 5.2 ng/dL}]) and decreasing testosterone levels with age for men older than 70 years (-1.55 nmol/L [-44.7 ng/dL] [CI, -2.05 to -1.06 nmol/L {-59.1 to -30.6 ng/dL}]). Testosterone was inversely associated with body mass index (BMI) (change per SD increase, -2.42 nmol/L [-69.7 ng/dL] [CI, -2.70 to -2.13 nmol/L {-77.8 to -61.4 ng/dL}]). Testosterone concentrations were lower for men who were married (mean difference, -0.57 nmol/L [-16.4 ng/dL] [CI, -0.89 to -0.26 nmol/L {-25.6 to -7.5 ng/dL}]); undertook at most 75 minutes of vigorous physical activity per week (-0.51 nmol/L [-14.7 ng/dL] [CI, -0.90 to -0.13 nmol/L {-25.9 to -3.7 ng/dL}]); were former smokers (-0.34 nmol/L [-9.8 ng/dL] [CI, -0.55 to -0.12 nmol/L {-15.9 to -3.5 ng/dL}]); or had hypertension (-0.53 nmol/L [-15.3 ng/dL] [CI, -0.82 to -0.24 nmol/L {-23.6 to -6.9 ng/dL}]), cardiovascular disease (-0.35 nmol/L [-10.1 ng/dL] [CI, -0.55 to -0.15 nmol/L {-15.9 to -4.3 ng/dL}]), cancer (-1.39 nmol/L [-40.1 ng/dL] [CI, -1.79 to -0.99 nmol/L {-51.6 to -28.5 ng/dL}]), or diabetes (-1.43 nmol/L [-41.2 ng/dL] [CI, -1.65 to -1.22 nmol/L {-47.6 to -35.2 ng/dL}]). Sex hormone-binding globulin was directly associated with age and inversely associated with BMI. Luteinizing hormone was directly associated with age in men older than 70 years.Cross-sectional analysis, heterogeneity between studies and in timing of blood sampling, and imputation for missing data.Multiple factors are associated with variation in male testosterone, SHBG, and LH concentrations. Reduced testosterone and increased LH concentrations may indicate impaired testicular function after age 70 years. Interpretation of individual testosterone measurements should account particularly for age older than 70 years, obesity, diabetes, and cancer.Medical Research Future Fund, Government of Western Australia, and Lawley Pharmaceuticals. (PROSPERO: CRD42019139668).
  •  
4.
  • Moayyeri, Alireza, et al. (författare)
  • Genetic determinants of heel bone properties : genome-wide association meta-analysis and replication in the GEFOS/GENOMOS consortium
  • 2014
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 23:11, s. 3054-3068
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantitative ultrasound of the heel captures heel bone properties that independently predict fracture risk and, with bone mineral density (BMD) assessed by X-ray (DXA), may be convenient alternatives for evaluating osteoporosis and fracture risk. We performed a meta-analysis of genome-wide association (GWA) studies to assess the genetic determinants of heel broadband ultrasound attenuation (BUA; n = 14 260), velocity of sound (VOS; n = 15 514) and BMD (n = 4566) in 13 discovery cohorts. Independent replication involved seven cohorts with GWA data (in silico n = 11 452) and new genotyping in 15 cohorts (de novo n = 24 902). In combined random effects, meta-analysis of the discovery and replication cohorts, nine single nucleotide polymorphisms (SNPs) had genome-wide significant (P < 5 x 10(-8)) associations with heel bone properties. Alongside SNPs within or near previously identified osteoporosis susceptibility genes including ESR1 (6q25.1: rs4869739, rs3020331, rs2982552), SPTBN1 (2p16.2: rs11898505), RSPO3 (6q22.33: rs7741021), WNT16 (7q31.31: rs2908007), DKK1 (10q21.1: rs7902708) and GPATCH1 (19q13.11: rs10416265), we identified a new locus on chromosome 11q14.2 (rs597319 close to TMEM135, a gene recently linked to osteoblastogenesis and longevity) significantly associated with both BUA and VOS (P < 8.23 x 10(-14)). In meta-analyses involving 25 cohorts with up to 14 985 fracture cases, six of 10 SNPs associated with heel bone properties at P < 5 x 10(-6) also had the expected direction of association with any fracture (P < 0.05), including three SNPs with P < 0.005: 6q22.33 (rs7741021), 7q31.31 (rs2908007) and 10q21.1 (rs7902708). In conclusion, this GWA study reveals the effect of several genes common to central DXA-derived BMD and heel ultrasound/DXA measures and points to a new genetic locus with potential implications for better understanding of osteoporosis pathophysiology.
  •  
5.
  • Movérare, Sofia, et al. (författare)
  • Differential effects on bone of estrogen receptor alpha and androgen receptor activation in orchidectomized adult male mice.
  • 2003
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 100:23, s. 13573-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Androgens may regulate the male skeleton either directly by stimulation of the androgen receptor (AR) or indirectly by aromatization of androgens into estrogens and, thereafter, by stimulation of the estrogen receptors (ERs). To directly compare the effect of ER activation on bone in vivo with the effect of AR activation, 9-month-old orchidectomized wild-type and ER-inactivated mice were treated with the nonaromatizable androgen 5alpha-dihydrotestosterone, 17beta-estradiol, or vehicle. Both ERalpha and AR but not ERbeta activation preserved the amount of trabecular bone. ERalpha activation resulted both in a preserved thickness and number of trabeculae. In contrast, AR activation exclusively preserved the number of trabeculae, whereas the thickness of the trabeculae was unaffected. Furthermore, the effects of 17beta-estradiol could not be mediated by the AR, and the effects of 5alpha-dihydrotestosterone were increased rather than decreased in ER-inactivated mice. ERalpha, but not AR or ERbeta, activation resulted in preserved thickness, volumetric density, and mechanical strength of the cortical bone. ERalpha activation increased serum levels of insulin-like growth factor I, which were positively correlated with all the cortical and trabecular bone parameters that were specifically preserved by ERalpha activation but not by AR activation, suggesting that insulin-like growth factor I might mediate these effects of ERalpha activation. Thus, the in vivo bone-sparing effect of ERalpha activation is distinct from the bone-sparing effect of AR activation in adult male mice. Because these two pathways are clearly distinct from each other, one may speculate that a combined treatment of selective ER modulators and selective AR modulators might be beneficial in the treatment of osteoporosis.
  •  
6.
  • Movérare-Skrtic, Sofia, et al. (författare)
  • Dihydrotestosterone treatment results in obesity and altered lipid metabolism in orchidectomized mice.
  • 2006
  • Ingår i: Obesity (Silver Spring, Md.). - : Wiley. - 1930-7381 .- 1930-739X. ; 14:4, s. 662-72
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: To determine the role of androgen receptor (AR) activation for adipose tissue metabolism. Sex steroids are important regulators of adipose tissue metabolism in men. Androgens may regulate the adipose tissue metabolism in men either directly by stimulation of the AR or indirectly by aromatization of androgens into estrogens and, thereafter, by stimulation of the estrogen receptors. Previous studies have shown that estrogen receptor alpha stimulation results in reduced fat mass in men. RESEARCH METHODS AND PROCEDURES: Orchidectomized mice were treated with the non-aromatizable androgen 5alpha-dihydrotestosterone (DHT), 17beta-estradiol, or vehicle. Vo(2), Vco(2), resting metabolic rate, locomotor activity, and food consumption were measured. Furthermore, changes in hepatic gene expression were analyzed. RESULTS: DHT treatment resulted in obesity, associated with reduced energy expenditure and fat oxidation. In contrast, DHT did not affect food consumption or locomotor activity. Furthermore, DHT treatment resulted in increased high-density lipoprotein-cholesterol and triglyceride levels associated with markedly decreased 7alpha-hydroxylase gene expression, indicating decreased bile acid production. DISCUSSION: We showed that AR activation results in obesity and altered lipid metabolism in orchidectomized mice. One may speculate that AR antagonists might be useful in the treatment of obesity in men.
  •  
7.
  • Ophoff, Jill, et al. (författare)
  • Physical activity in the androgen receptor knockout mouse: evidence for reversal of androgen deficiency on cancellous bone.
  • 2009
  • Ingår i: Biochemical and biophysical research communications. - : Elsevier BV. - 1090-2104 .- 0006-291X. ; 378:1, s. 139-44
  • Tidskriftsartikel (refereegranskat)abstract
    • Disruption of the androgen receptor (AR) in male mice reduces cortical bone expansion and muscle mass during puberty and results in high bone turnover-related cancellous osteopenia. We hypothesized that voluntary wheel running during growth is able to rescue the effects of AR disruption on bone. To this end, 5-week-old AR knockout (ARKO) mice were randomized to a running group (cage with running wheel) and a sedentary group (cage without wheel) and followed-up until 16 weeks of age. Voluntary wheel running in ARKO mice did not influence body weight, muscle mass or periosteal bone expansion. Interestingly, voluntary running significantly reduced bone turnover in ARKO mice and prevented cancellous bone loss due to a preservation of trabecular number. Thus, voluntary running in ARKO mice was able to reduce cancellous bone resorption, suggesting that sustained exercise may potentially compensate the effects of androgen disruption on cancellous bone.
  •  
8.
  • Svensson, Johan, 1964, et al. (författare)
  • Liver-derived IGF1 enhances the androgenic response in prostate.
  • 2008
  • Ingår i: The Journal of endocrinology. - 1479-6805. ; 199:3, s. 489-97
  • Tidskriftsartikel (refereegranskat)abstract
    • Both IGF1 and androgens are major enhancers of prostate growth and are implicated in the development of prostate hyperplasia and cancer. The aim of the present study was to investigate whether liver-derived endocrine IGF1 modulates the androgenic response in prostate. Mice with adult, liver-specific inactivation of IGF1 (LI-IGF1(-/-) mice) displayed an approximately 80% reduction in serum IGF1 levels associated with decreased prostate weight compared with control mice (anterior prostate lobe -19%, P<0.05; dorsolateral prostate (DLP) lobe -35%, P<0.01; ventral prostate (VP) lobe -47%, P<0.01). Reduced androgen receptor (Ar) mRNA and protein levels were observed in the VP lobe (-34% and -30% respectively, both P<0.05 versus control mice). Analysis of prostate morphology showed reductions in both the glandular and fibromuscular compartments of the VP and DLP lobes that were proportional to the reductions in the weights of these lobes. Immunohistochemistry revealed reduced intracellular AR immunoreactivity in the VP and DLP lobes. The non-aromatizable androgen dihydrotestosterone increased VP weight to a lesser extent in orchidectomized (ORX) LI-IGF1(-/-) mice than in ORX controls (-40%, P<0.05 versus control mice). In conclusion, deficiency of liver-derived IGF1 reduces both the glandular and fibromuscular compartments of the prostate, decreases AR expression in prostate, and reduces the stimulatory effect of androgens on VP weight. These findings may explain, at least in part, the well-known clinical association between serum IGF1 levels and conditions with abnormal prostate growth.
  •  
9.
  • Tivesten, Åsa, 1969, et al. (författare)
  • Additive protective effects of estrogen and androgen treatment on trabecular bone in ovariectomized rats.
  • 2004
  • Ingår i: Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. - 0884-0431. ; 19:11, s. 1833-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Both ER and AR activation regulates trabecular bone mass. We show that combined estrogen and androgen treatment results in additive protection of trabecular bone in OVX rats. This may in part be attributable to the effect of AR activation to attenuate the inhibitory effect of ER activation on bone formation. INTRODUCTION: Sex steroids are important regulators of trabecular bone mass. Both estrogen receptor (ER) and androgen receptor (AR) activation results in increased trabecular bone mass. The aim of this study was to investigate if combined estrogen and androgen treatment might be beneficial in the treatment of trabecular bone loss. MATERIALS AND METHODS: Twelve-week-old female rats were ovariectomized (OVX) and treated with vehicle (V), 17beta-estradiol (E2; ER activation), dihydrotestosterone (DHT; AR activation), or the combination (E2 + DHT) for 6 weeks. The skeletal phenotype was analyzed by pQCT, microCT, histomorphometry of growth plates, and serum levels of biochemical bone markers. RESULTS: Both E2 (+121% over V) and DHT (+34%) preserved the trabecular volumetric BMD (tvBMD) in OVX rats. The effect of E2 and DHT on tvBMD was additive, resulting in a 182% increase over V in the rats given E2 + DHT. MicroCT analyses of the trabecular bone microstructure revealed that the effect of E2 and DHT was additive on the number of trabeculae. E2 treatment reduced serum markers of both bone resorption (collagen C-terminal telopeptide) and bone formation (osteocalcin), indicating reduced bone turnover. Addition of DHT to E2 treatment did not modulate the effects of E2 on the marker of bone resorption, whereas it attenuated the inhibitory effect of E2 on the bone formation marker, which might explain the additive protective effect of E2 and DHT on trabecular bone mass. In contrast, DHT partially counteracted the suppressive effect of E2 on longitudinal bone growth and the E2-induced alterations in growth plate morphology. CONCLUSIONS: These findings show that combined estrogen and androgen treatment results in additive protective effects on trabecular bone in OVX rats. Our data suggest that a combined treatment with selective ER and AR modulators might be beneficial in the treatment of osteoporosis.
  •  
10.
  • Vanderschueren, Dirk, et al. (författare)
  • Androgens and bone.
  • 2004
  • Ingår i: Endocrine reviews. - : The Endocrine Society. - 0163-769X .- 1945-7189. ; 25:3, s. 389-425
  • Tidskriftsartikel (refereegranskat)abstract
    • Loss of estrogens or androgens increases the rate of bone remodeling by removing restraining effects on osteoblastogenesis and osteoclastogenesis, and also causes a focal imbalance between resorption and formation by prolonging the lifespan of osteoclasts and shortening the lifespan of osteoblasts. Conversely, androgens, as well as estrogens, maintain cancellous bone mass and integrity, regardless of age or sex. Although androgens, via the androgen receptor (AR), and estrogens, via the estrogen receptors (ERs), can exert these effects, their relative contribution remains uncertain. Recent studies suggest that androgen action on cancellous bone depends on (local) aromatization of androgens into estrogens. However, at least in rodents, androgen action on cancellous bone can be directly mediated via AR activation, even in the absence of ERs.Androgens also increase cortical bone size via stimulation of both longitudinal and radial growth. First, androgens, like estrogens, have a biphasic effect on endochondral bone formation: at the start of puberty, sex steroids stimulate endochondral bone formation, whereas they induce epiphyseal closure at the end of puberty. Androgen action on the growth plate is, however, clearly mediated via aromatization in estrogens and interaction with ERalpha. Androgens increase radial growth, whereas estrogens decrease periosteal bone formation. This effect of androgens may be important because bone strength in males seems to be determined by relatively higher periosteal bone formation and, therefore, greater bone dimensions, relative to muscle mass at older age. Experiments in mice again suggest that both the AR and ERalpha pathways are involved in androgen action on radial bone growth. ERbeta may mediate growth-limiting effects of estrogens in the female but does not seem to be involved in the regulation of bone size in males.In conclusion, androgens may protect men against osteoporosis via maintenance of cancellous bone mass and expansion of cortical bone. Such androgen action on bone is mediated by the AR and ERalpha.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16
Typ av publikation
tidskriftsartikel (14)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (16)
Författare/redaktör
Vanderschueren, Dirk (16)
Boonen, Steven (6)
Wu, Frederick C W (6)
Movérare-Skrtic, Sof ... (6)
Vandenput, Liesbeth, ... (4)
visa fler...
O'Neill, Terence W. (4)
Antonio, Leen (4)
Hankey, Graeme J. (3)
Mellström, Dan, 1945 (3)
Andersson, Niklas, 1 ... (3)
Handelsman, David J (2)
Karlsson, Magnus (2)
Svensson, Johan, 196 ... (2)
Pye, Stephen R. (2)
Kopchick, John J (2)
Gustafsson, Jan-Ake (2)
Lagerquist, Marie (2)
Tivesten, Åsa, 1969 (2)
Skrtic, Stanko, 1970 (1)
Fick, Jerker (1)
Khaw, Kay-Tee (1)
Lorentzon, Mattias, ... (1)
März, Winfried (1)
Nethander, Maria, 19 ... (1)
Karlsson, Magnus K. (1)
Raitakari, Olli T (1)
Cooper, Cyrus (1)
Claessens, Frank (1)
Soranzo, Nicole (1)
Campbell, Harry (1)
Huhtaniemi, Ilpo T. (1)
Eisman, John A (1)
Ikram, M. Arfan (1)
Zhu, Kun (1)
Sävendahl, Lars (1)
Holmäng, Agneta, 195 ... (1)
Hoffman, Andrew R (1)
Gyllensten, Ulf (1)
Spector, Timothy D (1)
Hsu, Yi-Hsiang (1)
Oscarsson, Jan, 1960 (1)
Igl, Wilmar (1)
Hicks, Andrew A. (1)
Pramstaller, Peter P ... (1)
Kindblom, Jon, 1969 (1)
Luben, Robert (1)
Lagerquist, Marie K (1)
Ljunggren, Östen (1)
Jansson, John-Olov, ... (1)
visa färre...
Lärosäte
Göteborgs universitet (16)
Chalmers tekniska högskola (3)
Karolinska Institutet (3)
Uppsala universitet (1)
Lunds universitet (1)
Språk
Engelska (16)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (10)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy