SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Veilleux Sylvain) "

Sökning: WFRF:(Veilleux Sylvain)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bolatto, Alberto D., et al. (författare)
  • ALMA Imaging of a Galactic Molecular Outflow in NGC 4945
  • 2021
  • Ingår i: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 923:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the ALMA detection of molecular outflowing gas in the central regions of NGC 4945, one of the nearest starbursts and also one of the nearest hosts of an active galactic nucleus (AGN). We detect four outflow plumes in CO J= 3 - 2 at similar to 0.3 resolution that appear to correspond to molecular gas located near the edges of the known ionized outflow cone and its (unobserved) counterpart behind the disk. The fastest and brightest of these plumes has emission reaching observed line-of-sight projected velocities of over 450 km s(-1) beyond systemic, equivalent to an estimated physical outflow velocity v greater than or similar to 600 km s(-1) for the fastest emission. Most of these plumes have corresponding emission in HCN or HCO + J= 4 - 3. We discuss a kinematic model for the outflow emission where the molecular gas has the geometry of the ionized gas cone and shares the rotation velocity of the galaxy when ejected. We use this model to explain the velocities we observe, constrain the physical speed of the ejected material, and account for the fraction of outflowing gas that is not detected due to confusion with the galaxy disk. We estimate a total molecular mass outflow rate (M) over dot(mol) similar to 20 M-circle dot yr(-1) flowing through a surface within 100 pc of the disk midplane, likely driven by a combination of the central starburst and AGN.
  •  
2.
  • Emig, Kimberly L., et al. (författare)
  • Super Star Clusters in the Central Starburst of NGC 4945
  • 2020
  • Ingår i: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 903:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The nearby (3.8Mpc) galaxy NGC 4945 hosts a nuclear starburst and Seyfert type 2 active galactic nucleus (AGN). We use the Atacama Large Millimeter/submillimeter Array (ALMA) to image the 93 GHz (3.2 mm) free-free continuum and hydrogen recombination line emission (H40 alpha and H42 alpha) at 2.2 pc (0 12) resolution. Our observations reveal 27 bright, compact sources with FWHM sizes of 1.4-4.0 pc, which we identify as candidate super star clusters. Recombination line emission, tracing the ionizing photon rate of the candidate clusters, is detected in 15 sources, six of which have a significant synchrotron component to the 93 GHz continuum. Adopting an age of similar to 5Myr, the stellar masses implied by the ionizing photon luminosities are log(10) (M*/M-circle dot) approximate to 4.7-6.1. We fit a slope to the cluster mass distribution and find beta = -1.8 +/-.0.4. The gas masses associated with these clusters, derived from the dust continuum at 350 GHz, are typically an order of magnitude lower than the stellar mass. These candidate clusters appear to have already converted a large fraction of their dense natal material into stars and, given their small freefall times of similar to 0.05 Myr, are surviving an early volatile phase. We identify a pointlike source in 93 GHz continuum emission that is presumed to be the AGN. We do not detect recombination line emission from the AGN and place an upper limit on the ionizing photons that leak into the starburst region of Q(0).<.10(52) s(-1).
  •  
3.
  • Levy, Rebecca C., et al. (författare)
  • Outflows from Super Star Clusters in the Central Starburst of NGC 253
  • 2021
  • Ingår i: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 912:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Young massive clusters play an important role in the evolution of their host galaxies, and feedback from the high-mass stars in these clusters can have profound effects on the surrounding interstellar medium. The nuclear starburst in the nearby galaxy NGC 253 at a distance of 3.5 Mpc is a key laboratory in which to study star formation in an extreme environment. Previous high-resolution (1.9 pc) dust continuum observations from the Atacama Large Millimeter/submillimeter Array (ALMA) discovered 14 compact, massive super star clusters (SSCs) still in formation. We present here ALMA data at 350 GHz with 28 mas (0.5 pc) resolution. We detect blueshifted absorption and redshifted emission (P-Cygni profiles) toward three of these SSCs in multiple lines, including CS 7-6 and (HCN)-C-13 4-3, which represent direct evidence for previously unobserved outflows. The mass contained in these outflows is a significant fraction of the cluster gas masses, which suggests we are witnessing a short but important phase. Further evidence of this is the finding of a molecular shell around the only SSC visible at near-IR wavelengths. We model the P-Cygni line profiles to constrain the outflow geometry, finding that the outflows must be nearly spherical. Through a comparison of the outflow properties with predictions from simulations, we find that none of the available mechanisms completely explains the observations, although dust-reprocessed radiation pressure and O star stellar winds are the most likely candidates. The observed outflows will have a very substantial effect on the clusters' evolution and star formation efficiency.
  •  
4.
  • Reynolds, Christopher S., et al. (författare)
  • Astrophysical Limits on Very Light Axion-like Particles from Chandra Grating Spectroscopy of NGC 1275
  • 2020
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 890:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Axions/axion-like particles (ALPs) are a well-motivated extension of the Standard Model and are generic within String Theory. The X-ray transparency of the intracluster medium (ICM) in galaxy clusters is a powerful probe of light ALPs (with mass <10(-11)eV); as X-ray photons from an embedded or background source propagate through the magnetized ICM, they may undergo energy-dependent quantum mechanical conversion into ALPs (and vice versa), imprinting distortions on the X-ray spectrum. We present Chandra data for the active galactic nucleus NGC 1275 at the center of the Perseus cluster. Employing a 490 ks High Energy Transmission Gratings exposure, we obtain a high-quality 1-9 keV spectrum free from photon pileup and ICM contamination. Apart from iron-band features, the spectrum is described by a power-law continuum, with any spectral distortions at the <3% level. We compute photon survival probabilities as a function of ALP mass m(a) and ALP-photon coupling constant g(alpha gamma) for an ensemble of ICM magnetic field models, and then use the NGC 1275 spectrum to constrain the (m(a), g(alpha gamma))-plane. Marginalizing over magnetic field realizations, the 99.7% credible region limits the ALP-photon coupling to G(alpha gamma) < 6 - 8 x 10(-13) GeV-1 (depending upon magnetic field model) for masses m(a) < 1 x 10(-12) eV. These are the most stringent limit to date on g(alpha gamma) for these light ALPs, and have already reached the sensitivity limits of next-generation helioscopes and light-shining-through-wall experiments. We highlight the potential of these studies with the next-generation X-ray observatories Athena and Lynx, but note the critical importance of advances in relative calibration of these future X-ray spectrometers.
  •  
5.
  • Veilleux, Sylvain, et al. (författare)
  • Cool outflows in galaxies and their implications
  • 2020
  • Ingår i: Astronomy and Astrophysics Review. - 0935-4956 .- 1432-0754. ; 28:1
  • Forskningsöversikt (refereegranskat)abstract
    • Neutral-atomic and molecular outflows are a common occurrence in galaxies, near and far. They operate over the full extent of their galaxy hosts, from the innermost regions of galactic nuclei to the outermost reaches of galaxy halos. They carry a substantial amount of material that would otherwise have been used to form new stars. These cool outflows may have a profound impact on the evolution of their host galaxies and environments. This article provides an overview of the basic physics of cool outflows, a comprehensive assessment of the observational techniques and diagnostic tools used to characterize them, a detailed description of the best-studied cases, and a more general discussion of the statistical properties of these outflows in the local and distant universe. The remaining outstanding issues that have not yet been resolved are summarized at the end of the review to inspire new research directions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy