SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Verbeeck Hans) "

Sökning: WFRF:(Verbeeck Hans)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
2.
  • Cuni-Sanchez, Aida, et al. (författare)
  • High aboveground carbon stock of African tropical montane forests
  • 2021
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 596:7873, s. 536-542
  • Tidskriftsartikel (refereegranskat)abstract
    • Tropical forests store 40–50per cent of terrestrial vegetation carbon. However, spatial variations in aboveground live tree biomass carbon (AGC) stocks remain poorly understood, in particular in tropical montane forests. Owing to climatic and soil changes with increasing elevation, AGC stocks are lower in tropical montane forests compared with lowland forests. Here we assemble and analyse a dataset of structurally intact old-growth forests (AfriMont) spanning 44 montane sites in 12 African countries. We find that montane sites in the AfriMont plot network have a mean AGC stock of 149.4megagrams of carbon per hectare (95% confidence interval 137.1–164.2), which is comparable to lowland forests in the African Tropical Rainforest Observation Network4 and about 70per cent and 32per cent higher than averages from plot networks in montane and lowland forests in the Neotropics, respectively. Notably, our results are two-thirds higher than the Intergovernmental Panel on Climate Change default values for these forests in Africa8. We find that the low stem density and high abundance of large trees of African lowland forests is mirrored in the montane forests sampled. This carbon store is endangered: we estimate that 0.8 million hectares of old-growth African montane forest have been lost since 2000. We provide country-specific montane forest AGC stock estimates modelled from our plot network to helpto guide forest conservation and reforestation interventions. Our findings highlight the need for conserving these biodiverse and carbon-rich ecosystems.
  •  
3.
  • Bauters, Marijn, et al. (författare)
  • Contrasting nitrogen fluxes in African tropical forests of the Congo Basin
  • 2019
  • Ingår i: Ecological Monographs. - : Wiley. - 0012-9615 .- 1557-7015. ; 89:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The observation of high losses of bioavailable nitrogen (N) and N richness in tropical forests is paradoxical with an apparent lack of N input. Hence, the current concept asserts that biological nitrogen fixation (BNF) must be a major N input for tropical forests. However, well-characterized N cycles are rare and geographically biased; organic N compounds are often neglected and soil gross N cycling is not well quantified. We conducted comprehensive N input and output measurements in four tropical forest types of the Congo Basin with contrasting biotic (mycorrhizal association) and abiotic (lowland–highland) environments. In 12 standardized setups, we monitored N deposition, throughfall, litterfall, leaching, and export during one hydrological year and completed this empirical N budget with nitrous oxide (N2O) flux measurement campaigns in both wet and dry season and insitu gross soil N transformations using 15N-tracing and numerical modeling. We found that all forests showed a very tight soil N cycle, with gross mineralization to immobilization ratios (M/I) close to 1 and relatively low gross nitrification to mineralization ratios (N/M). This was in line with the observation of dissolved organic nitrogen (DON) dominating N losses for the most abundant, arbuscular mycorrhizal associated, lowland forest type, but in contrast with high losses of dissolved inorganic nitrogen (DIN) in all other forest types. Altogether, our observations show that different forest types in central Africa exhibit N fluxes of contrasting magnitudes and N-species composition. In contrast to many Neotropical forests, our estimated N budgets of central African forests are imbalanced by a higher N input than output, with organic N contributing significantly to the input-output balance. This suggests that important other losses that are unaccounted for (e.g., NOx and N2 as well as particulate N) might play a major role in the N cycle of mature African tropical forests.
  •  
4.
  •  
5.
  • Conings, Bert, et al. (författare)
  • Getting rid of anti-solvents: gas quenching for high performance perovskite solar cells
  • 2018
  • Ingår i: 2018 IEEE 7TH WORLD CONFERENCE ON PHOTOVOLTAIC ENERGY CONVERSION (WCPEC) (A JOINT CONFERENCE OF 45TH IEEE PVSC, 28TH PVSEC and 34TH EU PVSEC). - : IEEE. - 9781538685297 ; , s. 1724-1729
  • Konferensbidrag (refereegranskat)abstract
    • As the field of perovskite optoelectronics developed, a plethora of strategies has arisen to control their electronic and morphological characteristics for the purpose of producing high efficiency devices. Unfortunately, despite this wealth of deposition approaches, the community experiences a great deal of irreproducibility between different laboratories, batches and preparation methods. Aiming to address this issue, we developed a simple deposition method based on gas quenching that yields smooth films for a wide range of perovskite compositions, in single, double, triple and quadruple cation varieties, and produces planar heterojunction devices with competitive efficiencies, so far up to 20%.
  •  
6.
  • De Pauw, Karen, et al. (författare)
  • Taxonomic, phylogenetic and functional diversity of understorey plants respond differently to environmental conditions in European forest edges
  • 2021
  • Ingår i: Journal of Ecology. - : Wiley. - 0022-0477 .- 1365-2745. ; 109:7, s. 2629-2648
  • Tidskriftsartikel (refereegranskat)abstract
    • Forest biodiversity world-wide is affected by climate change, habitat loss and fragmentation, and today 20% of the forest area is located within 100 m of a forest edge. Still, forest edges harbour a substantial amount of terrestrial biodiversity, especially in the understorey. The functional and phylogenetic diversity of forest edges have never been studied simultaneously at a continental scale, in spite of their importance for the forests' functioning and for communities' resilience to future change.We assessed nine metrics of taxonomic, phylogenetic and functional diversity of understorey plant communities in 225 plots spread along edge-to-interior gradients in deciduous forests across Europe. We then derived the relative effects and importance of edaphic, stand and landscape conditions on the diversity metrics.Here, we show that taxonomic, phylogenetic and functional diversity metrics respond differently to environmental conditions. We report an increase in functional diversity in plots with stronger microclimatic buffering, in spite of their lower taxonomic species richness. Additionally, we found increased taxonomic species richness at the forest edge, but in forests with intermediate and high openness, these communities had decreased phylogenetic diversity.Functional and phylogenetic diversity revealed complementary and important insights in community assembly mechanisms. Several environmental filters were identified as potential drivers of the patterns, such as a colder macroclimate and less buffered microclimate for functional diversity. For phylogenetic diversity, edaphic conditions were more important. Interestingly, plots with lower soil pH had decreased taxonomic species richness, but led to increased phylogenetic diversity, challenging the phylogenetic niche conservatism concept.Synthesis. Taxonomic, phylogenetic and functional diversity of understorey communities in forest edges respond differently to environmental conditions, providing insight into different community assembly mechanisms and their interactions. Therefore, it is important to look beyond species richness with phylogenetic and functional diversity approaches when focusing on forest understorey biodiversity.
  •  
7.
  • Fisher, Rosie A., et al. (författare)
  • Vegetation demographics in Earth System Models : A review of progress and priorities
  • 2018
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 24:1, s. 35-54
  • Forskningsöversikt (refereegranskat)abstract
    • Numerous current efforts seek to improve the representation of ecosystem ecology and vegetation demographic processes within Earth System Models (ESMs). These developments are widely viewed as an important step in developing greater realism in predictions of future ecosystem states and fluxes. Increased realism, however, leads to increased model complexity, with new features raising a suite of ecological questions that require empirical constraints. Here, we review the developments that permit the representation of plant demographics in ESMs, and identify issues raised by these developments that highlight important gaps in ecological understanding. These issues inevitably translate into uncertainty in model projections but also allow models to be applied to new processes and questions concerning the dynamics of real-world ecosystems. We argue that stronger and more innovative connections to data, across the range of scales considered, are required to address these gaps in understanding. The development of first-generation land surface models as a unifying framework for ecophysiological understanding stimulated much research into plant physiological traits and gas exchange. Constraining predictions at ecologically relevant spatial and temporal scales will require a similar investment of effort and intensified inter-disciplinary communication.
  •  
8.
  • Meeussen, Camille, et al. (författare)
  • Drivers of carbon stocks in forest edges across Europe
  • 2021
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 759
  • Tidskriftsartikel (refereegranskat)abstract
    • Forests play a key role in global carbon cycling and sequestration. However, the potential for carbon drawdown is affected by forest fragmentation and resulting changes in microclimate, nutrient inputs, disturbance and productivity near edges. Up to 20% of the global forested area lieswithin 100 m of an edge and, even in temperate forests, knowledge on howedge conditions affect carbon stocks and howfar this influence penetrates into forest interiors is scarce. Here we studied carbon stocks in the aboveground biomass, forest floor and the mineral topsoil in 225 plots in deciduous forest edges across Europe and tested the impact of macroclimate, nitrogen deposition and smaller-grained drivers (e.g. microclimate) on these stocks. Total carbon and carbon in the aboveground biomass stock were on average 39% and 95% higher at the forest edge than 100 m into the interior. The increase in the aboveground biomass stock close to the edgewas mainly related to enhanced nitrogen deposition. No edge influence was found for stocks in the mineral topsoil. Edge-to-interior gradients in forest floor carbon changed across latitude: carbon stocks in the forest floor were higher near the edge in southern Europe. Forest floor carbon decreased with increasing litter quality (i.e. high decomposition rate) and decreasing plant area index, whereas higher soil temperatures negatively affected the mineral top soil carbon. Based on high-resolution forest fragmentation maps, we estimate that the additional carbon stored in deciduous forest edges across Europe amounts to not less than 183 Tg carbon, which is equivalent to the storage capacity of 1 million ha of additional forest. This study underpins the importance of including edge influences when quantifying the carbon stocks in temperate forests and stresses the importance of preserving natural forest edges and small forest patches with a high edge-to-interior surface area.
  •  
9.
  • Meeussen, Camille, et al. (författare)
  • Microclimatic edge-to-interior gradients of European deciduous forests
  • 2021
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 0168-1923 .- 1873-2240. ; 311
  • Tidskriftsartikel (refereegranskat)abstract
    • Global forest cover is heavily fragmented. Due to high edge-to-surface ratios in small forest patches, a large proportion of forests is affected by edge influences involving steep microclimatic gradients. Although forest edges are important ecotones and account for 20% of the global forested area, it remains unclear how biotic and abiotic drivers affect forest edge microclimates at the continental scale. Here we report soil and air temperatures measured in 225 deciduous forest plots across Europe for two years. Forest stands were situated along a latitudinal gradient and subject to a varying vegetation structure as quantified by terrestrial laser scanning. In summer, the average offset of air and soil temperatures in forest edges compared to temperatures outside the forest amounted to -2.8 degrees C and -2.3 degrees C, respectively. Edge-to-interior summer temperature gradients were affected by the macroclimate and edge structure. From the edge onwards, larger offsets were observed in dense forest edges and in warmer, southern regions. In open forests and northern Europe, altered microclimatic conditions extended deeper into the forest and gradients were steeper. Canopy closure and plant area index were important drivers of summer offsets in edges, whereas in winter also the forest-floor biomass played a key role. Using high-resolution maps, we estimated that approximately 10% of the European broadleaved forests would be affected by altered temperature regimes. Gradual transition zones between forest and adjacent lands are valuable habitat types for edge species. However, if cool and moist forest interiors are desired, then (i) dense and complex forest edges, (ii) an undisturbed forested buffer zone of at least 12.5 m deep and (iii) trees with a high shade casting ability could all contribute to an increased offset. These findings provide important guidelines to mitigate edge influences, to protect typical forest microclimates and to adapt forest management to climate change.
  •  
10.
  • Meeussen, Camille, et al. (författare)
  • Structural variation of forest edges across Europe
  • 2020
  • Ingår i: Forest Ecology and Management. - : Elsevier BV. - 0378-1127 .- 1872-7042. ; 462
  • Tidskriftsartikel (refereegranskat)abstract
    • Forest edges are interfaces between forest interiors and adjacent land cover types. They are important elements in the landscape with almost 20% of the global forest area located within 100 m of the edge. Edges are structurally different from forest interiors, which results in unique edge influences on microclimate, functioning and biodiversity. These edge influences have been studied for multiple decades, yet there is only limited information available on how forest edge structure varies at the continental scale, and which factors drive this potential structural diversity. Here we quantified the structural variation along 45 edge-to-interior transects situated along latitudinal, elevational and management gradients across Europe. We combined state-of-the-art terrestrial laser scanning and conventional forest inventory techniques to investigate how the forest edge structure (e.g. plant area index, stem density, canopy height and foliage height diversity) varies and which factors affect this forest edge structural variability. Macroclimate, management, distance to the forest edge and tree community composition all influenced the forest edge structural variability and interestingly we detected interactive effects of our predictors as well. We found more abrupt edge-to-interior gradients (i.e. steeper slopes) in the plant area index in regularly thinned forests. In addition, latitude, mean annual temperature and humidity all affected edge-to-interior gradients in stem density. We also detected a simultaneous impact of both humidity and management, and humidity and distance to the forest edge, on the canopy height and foliage height diversity. These results contribute to our understanding of how environmental conditions and management shape the forest edge structure. Our findings stress the need for site-specific recommendations on forest edge management instead of generalized recommendations as the macroclimate substantially influences the forest edge structure. Only then, the forest edge microclimate, functioning and biodiversity can be conserved at a local scale.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17
Typ av publikation
tidskriftsartikel (14)
konferensbidrag (2)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (17)
Författare/redaktör
Verbeeck, Hans (15)
Verheyen, Kris (7)
Calders, Kim (7)
De Frenne, Pieter (6)
Brunet, Jörg (6)
Diekmann, Martin (6)
visa fler...
Lenoir, Jonathan (6)
Vangansbeke, Pieter (6)
Selvi, Federico (6)
Vanneste, Thomas (6)
Bollmann, Kurt (6)
Orczewska, Anna (6)
Govaert, Sanne (6)
Meeussen, Camille (6)
Iacopetti, Giovanni (6)
Spicher, Fabien (6)
Ponette, Quentin (6)
Cousins, Sara A. O. (5)
Plue, Jan (5)
Hedwall, Per-Ola (5)
Graae, Bente J. (4)
De Pauw, Karen (4)
Sanczuk, Pieter (4)
Lindmo, Sigrid (4)
Boeckx, Pascal (3)
Bauters, Marijn (3)
Zellweger, Florian (3)
Tagesson, Torbern (2)
Cappelaere, Bernard (2)
Ardö, Jonas (2)
Fensholt, Rasmus (2)
Horion, Stephanie (2)
Lewis, Simon L. (2)
Phillips, Oliver L. (2)
Schurgers, Guy (2)
Zuleta, Daniel, 1990 (2)
Arellano, Gabriel (2)
Davies, Stuart J. (2)
Bai, Sai (2)
Sakai, Nobuya (2)
Van Meerbeek, Koenra ... (2)
Svoboda, Miroslav (2)
Conings, Bert (2)
Babayigit, Aslihan (2)
Gauquelin, Nicolas (2)
Boyen, Hans-Gerd (2)
Beeckman, Hans (2)
Hall, Jefferson (2)
Depauw, Leen (2)
Gasperini, Cristina (2)
visa färre...
Lärosäte
Stockholms universitet (7)
Sveriges Lantbruksuniversitet (7)
Göteborgs universitet (5)
Lunds universitet (4)
Linköpings universitet (2)
Karlstads universitet (1)
visa fler...
IVL Svenska Miljöinstitutet (1)
visa färre...
Språk
Engelska (17)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (16)
Lantbruksvetenskap (8)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy