SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vicedo Cabrera Ana Maria) "

Sökning: WFRF:(Vicedo Cabrera Ana Maria)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Armstrong, Ben, et al. (författare)
  • The Role of Humidity in Associations of High Temperature with Mortality : A Multicountry, Multicity Study
  • 2019
  • Ingår i: Journal of Environmental Health Perspectives. - : The National Institute of Environmental Health Sciences. - 0091-6765 .- 1552-9924. ; 127:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: There is strong experimental evidence that physiologic stress from high temperatures is greater if humidity is higher. However, heat indices developed to allow for this have not consistently predicted mortality better than dry-bulb temperature.Objectives: We aimed to clarify the potential contribution of humidity an addition to temperature in predicting daily mortality in summer by using a large multicountry dataset.Methods: In 445 cities in 24 countries, we fit a time-series regression model for summer mortality with a distributed lag nonlinear model (DLNM) for temperature (up to lag 3) and supplemented this with a range of terms for relative humidity (RH) and its interaction with temperature. City-specific associations were summarized using meta-analytic techniques.Results: Adding a linear term for RH to the temperature term improved fit slightly, with an increase of 23% in RH (the 99th percentile anomaly) associated with a 1.1% [95% confidence interval (CI): 0.8, 1.3] decrease in mortality. Allowing curvature in the RH term or adding terms for interaction of RH with temperature did not improve the model fit. The humidity-related decreased risk was made up of a positive coefficient at lag 0 outweighed by negative coefficients at lags of 1–3 d. Key results were broadly robust to small model changes and replacing RH with absolute measures of humidity. Replacing temperature with apparent temperature, a metric combining humidity and temperature, reduced goodness of fit slightly.Discussion:The absence of a positive association of humidity with mortality in summer in this large multinational study is counter to expectations from physiologic studies, though consistent with previous epidemiologic studies finding little evidence for improved prediction by heat indices. The result that there was a small negative average association of humidity with mortality should be interpreted cautiously; the lag structure has unclear interpretation and suggests the need for future work to clarify.
  •  
2.
  • Chen, Gongbo, et al. (författare)
  • Mortality risk attributable to wildfire-related PM2·5 pollution : a global time series study in 749 locations
  • 2021
  • Ingår i: The Lancet Planetary Health. - : Elsevier. - 2542-5196. ; 5:9, s. e579-e587
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Many regions of the world are now facing more frequent and unprecedentedly large wildfires. However, the association between wildfire-related PM2·5 and mortality has not been well characterised. We aimed to comprehensively assess the association between short-term exposure to wildfire-related PM2·5 and mortality across various regions of the world.METHODS: For this time series study, data on daily counts of deaths for all causes, cardiovascular causes, and respiratory causes were collected from 749 cities in 43 countries and regions during 2000-16. Daily concentrations of wildfire-related PM2·5 were estimated using the three-dimensional chemical transport model GEOS-Chem at a 0·25° × 0·25° resolution. The association between wildfire-related PM2·5 exposure and mortality was examined using a quasi-Poisson time series model in each city considering both the current-day and lag effects, and the effect estimates were then pooled using a random-effects meta-analysis. Based on these pooled effect estimates, the population attributable fraction and relative risk (RR) of annual mortality due to acute wildfire-related PM2·5 exposure was calculated.FINDINGS: 65·6 million all-cause deaths, 15·1 million cardiovascular deaths, and 6·8 million respiratory deaths were included in our analyses. The pooled RRs of mortality associated with each 10 μg/m3 increase in the 3-day moving average (lag 0-2 days) of wildfire-related PM2·5 exposure were 1·019 (95% CI 1·016-1·022) for all-cause mortality, 1·017 (1·012-1·021) for cardiovascular mortality, and 1·019 (1·013-1·025) for respiratory mortality. Overall, 0·62% (95% CI 0·48-0·75) of all-cause deaths, 0·55% (0·43-0·67) of cardiovascular deaths, and 0·64% (0·50-0·78) of respiratory deaths were annually attributable to the acute impacts of wildfire-related PM2·5 exposure during the study period.INTERPRETATION: Short-term exposure to wildfire-related PM2·5 was associated with increased risk of mortality. Urgent action is needed to reduce health risks from the increasing wildfires.
  •  
3.
  • Gasparrini, Antonio, et al. (författare)
  • Projections of temperature-related excess mortality under climate change scenarios
  • 2017
  • Ingår i: The Lancet Planetary Health. - 2542-5196. ; 1:9, s. e360-e367
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Climate change can directly affect human health by varying exposure to non-optimal outdoor temperature. However, evidence on this direct impact at a global scale is limited, mainly due to issues in modelling and projecting complex and highly heterogeneous epidemiological relationships across different populations and climates.Methods: We collected observed daily time series of mean temperature and mortality counts for all causes or non-external causes only, in periods ranging from Jan 1, 1984, to Dec 31, 2015, from various locations across the globe through the Multi-Country Multi-City Collaborative Research Network. We estimated temperature-mortality relationships through a two-stage time series design. We generated current and future daily mean temperature series under four scenarios of climate change, determined by varying trajectories of greenhouse gas emissions, using five general circulation models. We projected excess mortality for cold and heat and their net change in 1990-2099 under each scenario of climate change, assuming no adaptation or population changes.Findings: Our dataset comprised 451 locations in 23 countries across nine regions of the world, including 85 879 895 deaths. Results indicate, on average, a net increase in temperature-related excess mortality under high-emission scenarios, although with important geographical differences. In temperate areas such as northern Europe, east Asia, and Australia, the less intense warming and large decrease in cold-related excess would induce a null or marginally negative net effect, with the net change in 2090-99 compared with 2010-19 ranging from -1·2% (empirical 95% CI -3·6 to 1·4) in Australia to -0·1% (-2·1 to 1·6) in east Asia under the highest emission scenario, although the decreasing trends would reverse during the course of the century. Conversely, warmer regions, such as the central and southern parts of America or Europe, and especially southeast Asia, would experience a sharp surge in heat-related impacts and extremely large net increases, with the net change at the end of the century ranging from 3·0% (-3·0 to 9·3) in Central America to 12·7% (-4·7 to 28·1) in southeast Asia under the highest emission scenario. Most of the health effects directly due to temperature increase could be avoided under scenarios involving mitigation strategies to limit emissions and further warming of the planet.Interpretation: This study shows the negative health impacts of climate change that, under high-emission scenarios, would disproportionately affect warmer and poorer regions of the world. Comparison with lower emission scenarios emphasises the importance of mitigation policies for limiting global warming and reducing the associated health risks.
  •  
4.
  • Guo, Yuming, et al. (författare)
  • Quantifying excess deaths related to heatwaves under climate change scenarios : A multicountry time series modelling study
  • 2018
  • Ingår i: PLoS Medicine. - 1549-1277 .- 1549-1676. ; 15:7
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Heatwaves are a critical public health problem. There will be an increase in the frequency and severity of heatwaves under changing climate. However, evidence about the impacts of climate change on heatwave-related mortality at a global scale is limited.METHODS AND FINDINGS: We collected historical daily time series of mean temperature and mortality for all causes or nonexternal causes, in periods ranging from January 1, 1984, to December 31, 2015, in 412 communities within 20 countries/regions. We estimated heatwave-mortality associations through a two-stage time series design. Current and future daily mean temperature series were projected under four scenarios of greenhouse gas emissions from 1971-2099, with five general circulation models. We projected excess mortality in relation to heatwaves in the future under each scenario of greenhouse gas emissions, with two assumptions for adaptation (no adaptation and hypothetical adaptation) and three scenarios of population change (high variant, median variant, and low variant). Results show that, if there is no adaptation, heatwave-related excess mortality is expected to increase the most in tropical and subtropical countries/regions (close to the equator), while European countries and the United States will have smaller percent increases in heatwave-related excess mortality. The higher the population variant and the greenhouse gas emissions, the higher the increase of heatwave-related excess mortality in the future. The changes in 2031-2080 compared with 1971-2020 range from approximately 2,000% in Colombia to 150% in Moldova under the highest emission scenario and high-variant population scenario, without any adaptation. If we considered hypothetical adaptation to future climate, under high-variant population scenario and all scenarios of greenhouse gas emissions, the heatwave-related excess mortality is expected to still increase across all the countries/regions except Moldova and Japan. However, the increase would be much smaller than the no adaptation scenario. The simple assumptions with respect to adaptation as follows: no adaptation and hypothetical adaptation results in some uncertainties of projections.CONCLUSIONS: This study provides a comprehensive characterisation of future heatwave-related excess mortality across various regions and under alternative scenarios of greenhouse gas emissions, different assumptions of adaptation, and different scenarios of population change. The projections can help decision makers in planning adaptation and mitigation strategies for climate change.
  •  
5.
  • Lee, Jae Young, et al. (författare)
  • Predicted temperature-increase-induced global health burden and its regional variability
  • 2019
  • Ingår i: Environment International. - : Elsevier. - 0160-4120 .- 1873-6750. ; 131
  • Tidskriftsartikel (refereegranskat)abstract
    • An increase in the global health burden of temperature was projected for 459 locations in 28 countries worldwide under four representative concentration pathway scenarios until 2099. We determined that the amount of temperature increase for each 100 ppm increase in global CO2 concentrations is nearly constant, regardless of climate scenarios. The overall average temperature increase during 2010-2099 is largest in Canada (1.16 °C/100 ppm) and Finland (1.14 °C/100 ppm), while it is smallest in Ireland (0.62 °C/100 ppm) and Argentina (0.63 °C/100 ppm). In addition, for each 1 °C temperature increase, the amount of excess mortality is increased largely in tropical countries such as Vietnam (10.34%p/°C) and the Philippines (8.18%p/°C), while it is decreased in Ireland (-0.92%p/°C) and Australia (-0.32%p/°C). To understand the regional variability in temperature increase and mortality, we performed a regression-based modeling. We observed that the projected temperature increase is highly correlated with daily temperature range at the location and vulnerability to temperature increase is affected by health expenditure, and proportions of obese and elderly population.
  •  
6.
  • Meng, Xia, et al. (författare)
  • Short term associations of ambient nitrogen dioxide with daily total, cardiovascular, and respiratory mortality : multilocation analysis in 398 cities.
  • 2021
  • Ingår i: BMJ. British Medical Journal. - : BMJ Publishing Group Ltd. - 1756-1833. ; 372
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: To evaluate the short term associations between nitrogen dioxide (NO2) and total, cardiovascular, and respiratory mortality across multiple countries/regions worldwide, using a uniform analytical protocol.DESIGN: Two stage, time series approach, with overdispersed generalised linear models and multilevel meta-analysis.SETTING: 398 cities in 22 low to high income countries/regions.MAIN OUTCOME MEASURES: Daily deaths from total (62.8 million), cardiovascular (19.7 million), and respiratory (5.5 million) causes between 1973 and 2018.RESULTS: On average, a 10 μg/m3 increase in NO2 concentration on lag 1 day (previous day) was associated with 0.46% (95% confidence interval 0.36% to 0.57%), 0.37% (0.22% to 0.51%), and 0.47% (0.21% to 0.72%) increases in total, cardiovascular, and respiratory mortality, respectively. These associations remained robust after adjusting for co-pollutants (particulate matter with aerodynamic diameter ≤10 μm or ≤2.5 μm (PM10 and PM2.5, respectively), ozone, sulfur dioxide, and carbon monoxide). The pooled concentration-response curves for all three causes were almost linear without discernible thresholds. The proportion of deaths attributable to NO2 concentration above the counterfactual zero level was 1.23% (95% confidence interval 0.96% to 1.51%) across the 398 cities.CONCLUSIONS: This multilocation study provides key evidence on the independent and linear associations between short term exposure to NO2 and increased risk of total, cardiovascular, and respiratory mortality, suggesting that health benefits would be achieved by tightening the guidelines and regulatory limits of NO2.
  •  
7.
  • Oudin Åström, Daniel, et al. (författare)
  • Investigating changes in mortality attributable to heat and cold in Stockholm, Sweden
  • 2018
  • Ingår i: International journal of biometeorology. - 0020-7128 .- 1432-1254. ; 62:9, s. 1777-1780
  • Tidskriftsartikel (refereegranskat)abstract
    • Projections of temperature-related mortality rely upon exposure-response relationships using recent data. Analyzing long historical data and trends may extend knowledge of past and present impacts that may provide additional insight and improve future scenarios. We collected daily mean temperatures and daily all-cause mortality for the period 1901-2013 for Stockholm County, Sweden, and calculated the total attributable fraction of mortality due to non-optimal temperatures and quantified the contribution of cold and heat. Total mortality attributable to non-optimal temperatures varied between periods and cold consistently had a larger impact on mortality than heat. Cold-related attributable fraction (AF) remained stable over time whereas heat-related AF decreased. AF on cold days remained stable over time, which may indicate that mortality during colder months may not decline as temperatures increase in the future. More research is needed to enhance estimates of burdens related to cold and heat in the future.
  •  
8.
  • Sera, Francesco, et al. (författare)
  • How urban characteristics affect vulnerability to heat and cold : a multi-country analysis
  • 2019
  • Ingår i: International Journal of Epidemiology. - : Oxford University Press. - 0300-5771 .- 1464-3685. ; 48:4, s. 1101-1112
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The health burden associated with temperature is expected to increase due to a warming climate. Populations living in cities are likely to be particularly at risk, but the role of urban characteristics in modifying the direct effects of temperature on health is still unclear. In this contribution, we used a multi-country dataset to study effect modification of temperature-mortality relationships by a range of city-specific indicators.METHODS: We collected ambient temperature and mortality daily time-series data for 340 cities in 22 countries, in periods between 1985 and 2014. Standardized measures of demographic, socio-economic, infrastructural and environmental indicators were derived from the Organisation for Economic Co-operation and Development (OECD) Regional and Metropolitan Database. We used distributed lag non-linear and multivariate meta-regression models to estimate fractions of mortality attributable to heat and cold (AF%) in each city, and to evaluate the effect modification of each indicator across cities.RESULTS: Heat- and cold-related deaths amounted to 0.54% (95% confidence interval: 0.49 to 0.58%) and 6.05% (5.59 to 6.36%) of total deaths, respectively. Several city indicators modify the effect of heat, with a higher mortality impact associated with increases in population density, fine particles (PM2.5), gross domestic product (GDP) and Gini index (a measure of income inequality), whereas higher levels of green spaces were linked with a decreased effect of heat.CONCLUSIONS: This represents the largest study to date assessing the effect modification of temperature-mortality relationships. Evidence from this study can inform public-health interventions and urban planning under various climate-change and urban-development scenarios.
  •  
9.
  • Zhao, Qi, et al. (författare)
  • Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019 : a three-stage modelling study
  • 2021
  • Ingår i: The Lancet Planetary Health. - : Elsevier. - 2542-5196. ; 5:7, s. e415-e425
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Exposure to cold or hot temperatures is associated with premature deaths. We aimed to evaluate the global, regional, and national mortality burden associated with non-optimal ambient temperatures.METHODS: In this modelling study, we collected time-series data on mortality and ambient temperatures from 750 locations in 43 countries and five meta-predictors at a grid size of 0·5° × 0·5° across the globe. A three-stage analysis strategy was used. First, the temperature-mortality association was fitted for each location by use of a time-series regression. Second, a multivariate meta-regression model was built between location-specific estimates and meta-predictors. Finally, the grid-specific temperature-mortality association between 2000 and 2019 was predicted by use of the fitted meta-regression and the grid-specific meta-predictors. Excess deaths due to non-optimal temperatures, the ratio between annual excess deaths and all deaths of a year (the excess death ratio), and the death rate per 100 000 residents were then calculated for each grid across the world. Grids were divided according to regional groupings of the UN Statistics Division.FINDINGS: Globally, 5 083 173 deaths (95% empirical CI [eCI] 4 087 967-5 965 520) were associated with non-optimal temperatures per year, accounting for 9·43% (95% eCI 7·58-11·07) of all deaths (8·52% [6·19-10·47] were cold-related and 0·91% [0·56-1·36] were heat-related). There were 74 temperature-related excess deaths per 100 000 residents (95% eCI 60-87). The mortality burden varied geographically. Of all excess deaths, 2 617 322 (51·49%) occurred in Asia. Eastern Europe had the highest heat-related excess death rate and Sub-Saharan Africa had the highest cold-related excess death rate. From 2000-03 to 2016-19, the global cold-related excess death ratio changed by -0·51 percentage points (95% eCI -0·61 to -0·42) and the global heat-related excess death ratio increased by 0·21 percentage points (0·13-0·31), leading to a net reduction in the overall ratio. The largest decline in overall excess death ratio occurred in South-eastern Asia, whereas excess death ratio fluctuated in Southern Asia and Europe.INTERPRETATION: Non-optimal temperatures are associated with a substantial mortality burden, which varies spatiotemporally. Our findings will benefit international, national, and local communities in developing preparedness and prevention strategies to reduce weather-related impacts immediately and under climate change scenarios.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy