SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vicedo Cabrera Ana Maria) ;pers:(Li Shanshan)"

Sökning: WFRF:(Vicedo Cabrera Ana Maria) > Li Shanshan

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chen, Gongbo, et al. (författare)
  • All-cause, cardiovascular, and respiratory mortality and wildfire-related ozone : a multicountry two-stage time series analysis
  • 2024
  • Ingår i: The Lancet Planetary Health. - : Elsevier. - 2542-5196. ; 8:7, s. e452-e462
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Wildfire activity is an important source of tropospheric ozone (O3) pollution. However, no study to date has systematically examined the associations of wildfire-related O3 exposure with mortality globally.Methods: We did a multicountry two-stage time series analysis. From the Multi-City Multi-Country (MCC) Collaborative Research Network, data on daily all-cause, cardiovascular, and respiratory deaths were obtained from 749 locations in 43 countries or areas, representing overlapping periods from Jan 1, 2000, to Dec 31, 2016. We estimated the daily concentration of wildfire-related O3 in study locations using a chemical transport model, and then calibrated and downscaled O3 estimates to a resolution of 0·25° × 0·25° (approximately 28 km2 at the equator). Using a random-effects meta-analysis, we examined the associations of short-term wildfire-related O3 exposure (lag period of 0–2 days) with daily mortality, first at the location level and then pooled at the country, regional, and global levels. Annual excess mortality fraction in each location attributable to wildfire-related O3 was calculated with pooled effect estimates and used to obtain excess mortality fractions at country, regional, and global levels.Findings: Between 2000 and 2016, the highest maximum daily wildfire-related O3 concentrations (≥30 μg/m3) were observed in locations in South America, central America, and southeastern Asia, and the country of South Africa. Across all locations, an increase of 1 μg/m3 in the mean daily concentration of wildfire-related O3 during lag 0–2 days was associated with increases of 0·55% (95% CI 0·29 to 0·80) in daily all-cause mortality, 0·44% (–0·10 to 0·99) in daily cardiovascular mortality, and 0·82% (0·18 to 1·47) in daily respiratory mortality. The associations of daily mortality rates with wildfire-related O3 exposure showed substantial geographical heterogeneity at the country and regional levels. Across all locations, estimated annual excess mortality fractions of 0·58% (95% CI 0·31 to 0·85; 31 606 deaths [95% CI 17 038 to 46 027]) for all-cause mortality, 0·41% (–0·10 to 0·91; 5249 [–1244 to 11 620]) for cardiovascular mortality, and 0·86% (0·18 to 1·51; 4657 [999 to 8206]) for respiratory mortality were attributable to short-term exposure to wildfire-related O3.Interpretation: In this study, we observed an increase in all-cause and respiratory mortality associated with short-term wildfire-related O3 exposure. Effective risk and smoke management strategies should be implemented to protect the public from the impacts of wildfires.
  •  
2.
  • Chen, Gongbo, et al. (författare)
  • Mortality risk attributable to wildfire-related PM2·5 pollution : a global time series study in 749 locations
  • 2021
  • Ingår i: The Lancet Planetary Health. - : Elsevier. - 2542-5196. ; 5:9, s. e579-e587
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Many regions of the world are now facing more frequent and unprecedentedly large wildfires. However, the association between wildfire-related PM2·5 and mortality has not been well characterised. We aimed to comprehensively assess the association between short-term exposure to wildfire-related PM2·5 and mortality across various regions of the world.METHODS: For this time series study, data on daily counts of deaths for all causes, cardiovascular causes, and respiratory causes were collected from 749 cities in 43 countries and regions during 2000-16. Daily concentrations of wildfire-related PM2·5 were estimated using the three-dimensional chemical transport model GEOS-Chem at a 0·25° × 0·25° resolution. The association between wildfire-related PM2·5 exposure and mortality was examined using a quasi-Poisson time series model in each city considering both the current-day and lag effects, and the effect estimates were then pooled using a random-effects meta-analysis. Based on these pooled effect estimates, the population attributable fraction and relative risk (RR) of annual mortality due to acute wildfire-related PM2·5 exposure was calculated.FINDINGS: 65·6 million all-cause deaths, 15·1 million cardiovascular deaths, and 6·8 million respiratory deaths were included in our analyses. The pooled RRs of mortality associated with each 10 μg/m3 increase in the 3-day moving average (lag 0-2 days) of wildfire-related PM2·5 exposure were 1·019 (95% CI 1·016-1·022) for all-cause mortality, 1·017 (1·012-1·021) for cardiovascular mortality, and 1·019 (1·013-1·025) for respiratory mortality. Overall, 0·62% (95% CI 0·48-0·75) of all-cause deaths, 0·55% (0·43-0·67) of cardiovascular deaths, and 0·64% (0·50-0·78) of respiratory deaths were annually attributable to the acute impacts of wildfire-related PM2·5 exposure during the study period.INTERPRETATION: Short-term exposure to wildfire-related PM2·5 was associated with increased risk of mortality. Urgent action is needed to reduce health risks from the increasing wildfires.
  •  
3.
  • Guo, Yuming, et al. (författare)
  • Quantifying excess deaths related to heatwaves under climate change scenarios : A multicountry time series modelling study
  • 2018
  • Ingår i: PLoS Medicine. - : Public Library of Science (PLoS). - 1549-1277 .- 1549-1676. ; 15:7
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Heatwaves are a critical public health problem. There will be an increase in the frequency and severity of heatwaves under changing climate. However, evidence about the impacts of climate change on heatwave-related mortality at a global scale is limited.METHODS AND FINDINGS: We collected historical daily time series of mean temperature and mortality for all causes or nonexternal causes, in periods ranging from January 1, 1984, to December 31, 2015, in 412 communities within 20 countries/regions. We estimated heatwave-mortality associations through a two-stage time series design. Current and future daily mean temperature series were projected under four scenarios of greenhouse gas emissions from 1971-2099, with five general circulation models. We projected excess mortality in relation to heatwaves in the future under each scenario of greenhouse gas emissions, with two assumptions for adaptation (no adaptation and hypothetical adaptation) and three scenarios of population change (high variant, median variant, and low variant). Results show that, if there is no adaptation, heatwave-related excess mortality is expected to increase the most in tropical and subtropical countries/regions (close to the equator), while European countries and the United States will have smaller percent increases in heatwave-related excess mortality. The higher the population variant and the greenhouse gas emissions, the higher the increase of heatwave-related excess mortality in the future. The changes in 2031-2080 compared with 1971-2020 range from approximately 2,000% in Colombia to 150% in Moldova under the highest emission scenario and high-variant population scenario, without any adaptation. If we considered hypothetical adaptation to future climate, under high-variant population scenario and all scenarios of greenhouse gas emissions, the heatwave-related excess mortality is expected to still increase across all the countries/regions except Moldova and Japan. However, the increase would be much smaller than the no adaptation scenario. The simple assumptions with respect to adaptation as follows: no adaptation and hypothetical adaptation results in some uncertainties of projections.CONCLUSIONS: This study provides a comprehensive characterisation of future heatwave-related excess mortality across various regions and under alternative scenarios of greenhouse gas emissions, different assumptions of adaptation, and different scenarios of population change. The projections can help decision makers in planning adaptation and mitigation strategies for climate change.
  •  
4.
  • Lee, Jae Young, et al. (författare)
  • Predicted temperature-increase-induced global health burden and its regional variability
  • 2019
  • Ingår i: Environment International. - : Elsevier. - 0160-4120 .- 1873-6750. ; 131
  • Tidskriftsartikel (refereegranskat)abstract
    • An increase in the global health burden of temperature was projected for 459 locations in 28 countries worldwide under four representative concentration pathway scenarios until 2099. We determined that the amount of temperature increase for each 100 ppm increase in global CO2 concentrations is nearly constant, regardless of climate scenarios. The overall average temperature increase during 2010-2099 is largest in Canada (1.16 °C/100 ppm) and Finland (1.14 °C/100 ppm), while it is smallest in Ireland (0.62 °C/100 ppm) and Argentina (0.63 °C/100 ppm). In addition, for each 1 °C temperature increase, the amount of excess mortality is increased largely in tropical countries such as Vietnam (10.34%p/°C) and the Philippines (8.18%p/°C), while it is decreased in Ireland (-0.92%p/°C) and Australia (-0.32%p/°C). To understand the regional variability in temperature increase and mortality, we performed a regression-based modeling. We observed that the projected temperature increase is highly correlated with daily temperature range at the location and vulnerability to temperature increase is affected by health expenditure, and proportions of obese and elderly population.
  •  
5.
  • Liu, Cong, et al. (författare)
  • Coarse particulate air pollution and daily mortality : a global study in 205 cities
  • 2022
  • Ingår i: American Journal of Respiratory and Critical Care Medicine. - : American Thoracic Society. - 1073-449X .- 1535-4970. ; 206:8, s. 999-1007
  • Tidskriftsartikel (refereegranskat)abstract
    • RATIONALE: The associations between ambient coarse particulate matter (PM2.5-10) and daily mortality is not fully understood at a global scale.OBJECTIVES: To evaluate the short-term associations between PM2.5-10 and total, cardiovascular, and respiratory mortality across multiple countries/regions worldwide.METHODS: We collected daily mortality (total, cardiovascular, respiratory) and air pollution data from 205 cities in 20 countries/regions. Concentrations of PM2.5-10 were computed as the difference between inhalable and fine particulate matter. A two-stage time-series analytic approach was applied, with over-dispersed generalized linear models and multilevel meta-analysis. We fitted two-pollutant models to test the independent effect of PM2.5-10 from co-pollutants (fine particulate matter, nitrogen dioxide, sulfur dioxide, ozone, and carbon monoxide). Exposure-response relationship curves were pooled and regional analyses were conducted.MEASUREMENTS AND MAIN RESULTS: A 10 μg/m3 increase in PM2.5-10 concentration on lag 0-1 day was associated with increments of 0.51% (95% confidence interval [CI]: 0.18%, 0.84%), 0.43% (95%CI: 0.15%, 0.71%) and 0.41% (95%CI: 0.06%, 0.77%) in total, cardiovascular, and respiratory mortality, respectively. The associations varied by country and region. These associations were robust to adjustment by all co-pollutants in two-pollutant models, especially for PM2.5. The exposure-response curves for total, cardiovascular, and respiratory mortality were positive, with steeper slopes at lower exposure ranges and without discernible thresholds.CONCLUSIONS: This study provides novel global evidence on the robust and independent associations between short-term exposure to ambient PM2.5-10 and total, cardiovascular and respiratory mortality, suggesting the need to establish a unique guideline or regulatory limit for daily concentrations of PM2.5-10.
  •  
6.
  • Meng, Xia, et al. (författare)
  • Short term associations of ambient nitrogen dioxide with daily total, cardiovascular, and respiratory mortality : multilocation analysis in 398 cities.
  • 2021
  • Ingår i: The BMJ. - : BMJ Publishing Group Ltd. - 1756-1833. ; 372
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: To evaluate the short term associations between nitrogen dioxide (NO2) and total, cardiovascular, and respiratory mortality across multiple countries/regions worldwide, using a uniform analytical protocol.DESIGN: Two stage, time series approach, with overdispersed generalised linear models and multilevel meta-analysis.SETTING: 398 cities in 22 low to high income countries/regions.MAIN OUTCOME MEASURES: Daily deaths from total (62.8 million), cardiovascular (19.7 million), and respiratory (5.5 million) causes between 1973 and 2018.RESULTS: On average, a 10 μg/m3 increase in NO2 concentration on lag 1 day (previous day) was associated with 0.46% (95% confidence interval 0.36% to 0.57%), 0.37% (0.22% to 0.51%), and 0.47% (0.21% to 0.72%) increases in total, cardiovascular, and respiratory mortality, respectively. These associations remained robust after adjusting for co-pollutants (particulate matter with aerodynamic diameter ≤10 μm or ≤2.5 μm (PM10 and PM2.5, respectively), ozone, sulfur dioxide, and carbon monoxide). The pooled concentration-response curves for all three causes were almost linear without discernible thresholds. The proportion of deaths attributable to NO2 concentration above the counterfactual zero level was 1.23% (95% confidence interval 0.96% to 1.51%) across the 398 cities.CONCLUSIONS: This multilocation study provides key evidence on the independent and linear associations between short term exposure to NO2 and increased risk of total, cardiovascular, and respiratory mortality, suggesting that health benefits would be achieved by tightening the guidelines and regulatory limits of NO2.
  •  
7.
  • Rai, Masna, et al. (författare)
  • Heat-related cardiorespiratory mortality : effect modification by air pollution across 482 cities from 24 countries
  • 2023
  • Ingår i: Environment International. - : Elsevier. - 0160-4120 .- 1873-6750. ; 174
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Evidence on the potential interactive effects of heat and ambient air pollution on cause-specific mortality is inconclusive and limited to selected locations. Objectives: We investigated the effects of heat on cardiovascular and respiratory mortality and its modification by air pollution during summer months (six consecutive hottest months) in 482 locations across 24 countries.Methods: Location-specific daily death counts and exposure data (e.g., particulate matter with diameters ≤ 2.5 µm [PM2.5]) were obtained from 2000 to 2018. We used location-specific confounder-adjusted Quasi-Poisson regression with a tensor product between air temperature and the air pollutant. We extracted heat effects at low, medium, and high levels of pollutants, defined as the 5th, 50th, and 95th percentile of the location-specific pollutant concentrations. Country-specific and overall estimates were derived using a random-effects multilevel meta-analytical model.Results: Heat was associated with increased cardiorespiratory mortality. Moreover, the heat effects were modified by elevated levels of all air pollutants in most locations, with stronger effects for respiratory than cardiovascular mortality. For example, the percent increase in respiratory mortality per increase in the 2-day average summer temperature from the 75th to the 99th percentile was 7.7% (95% Confidence Interval [CI] 7.6–7.7), 11.3% (95%CI 11.2–11.3), and 14.3% (95% CI 14.1–14.5) at low, medium, and high levels of PM2.5, respectively. Similarly, cardiovascular mortality increased by 1.6 (95%CI 1.5–1.6), 5.1 (95%CI 5.1–5.2), and 8.7 (95%CI 8.7–8.8) at low, medium, and high levels of O3, respectively.Discussion: We observed considerable modification of the heat effects on cardiovascular and respiratory mortality by elevated levels of air pollutants. Therefore, mitigation measures following the new WHO Air Quality Guidelines are crucial to enhance better health and promote sustainable development.
  •  
8.
  • Wen, Bo, et al. (författare)
  • Comparison for the effects of different components of temperature variability on mortality : A multi-country time-series study
  • 2024
  • Ingår i: Environment International. - : Elsevier. - 0160-4120 .- 1873-6750. ; 187
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Temperature variability (TV) is associated with increased mortality risk. However, it is still unknown whether intra-day or inter-day TV has different effects. Objectives: We aimed to assess the association of intra-day TV and inter-day TV with all-cause, cardiovascular, and respiratory mortality.Methods: We collected data on total, cardiovascular, and respiratory mortality and meteorology from 758 locations in 47 countries or regions from 1972 to 2020. We defined inter-day TV as the standard deviation (SD) of daily mean temperatures across the lag interval, and intra-day TV as the average SD of minimum and maximum temperatures on each day. In the first stage, inter-day and intra-day TVs were modelled simultaneously in the quasi-Poisson time-series model for each location. In the second stage, a multi-level analysis was used to pool the location-specific estimates.Results: Overall, the mortality risk due to each interquartile range [IQR] increase was higher for intra-day TV than for inter-day TV. The risk increased by 0.59% (95% confidence interval [CI]: 0.53, 0.65) for all-cause mortality, 0.64% (95% CI: 0.56, 0.73) for cardiovascular mortality, and 0.65% (95% CI: 0.49, 0.80) for respiratory mortality per IQR increase in intra-day TV0–7 (0.9 °C). An IQR increase in inter-day TV0–7 (1.6 °C) was associated with 0.22% (95% CI: 0.18, 0.26) increase in all-cause mortality, 0.44% (95% CI: 0.37, 0.50) increase in cardiovascular mortality, and 0.31% (95% CI: 0.21, 0.41) increase in respiratory mortality. The proportion of all-cause deaths attributable to intra-day TV0–7 and inter-day TV0–7 was 1.45% and 0.35%, respectively. The mortality risks varied by lag interval, climate area, season, and climate type.Conclusions: Our results indicated that intra-day TV may explain the main part of the mortality risk related to TV and suggested that comprehensive evaluations should be proposed in more countries to help protect human health.
  •  
9.
  • Wu, Yao, et al. (författare)
  • Fluctuating temperature modifies heat-mortality association around the globe
  • 2022
  • Ingår i: The Innovation. - : Cell Press. - 2666-6758. ; 3:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Studies have investigated the effects of heat and temperature variability (TV) on mortality. However, few assessed whether TV modifies the heat-mortality association. Data on daily temperature and mortality in the warm season were collected from 717 locations across 36 countries. TV was calculated as the standard deviation of the average of the same and previous days’ minimum and maximum temperatures. We used location-specific quasi-Poisson regression models with an interaction term between the cross-basis term for mean temperature and quartiles of TV to obtain heat-mortality associations under each quartile of TV, and then pooled estimates at the country, regional, and global levels. Results show the increased risk in heat-related mortality with increments in TV, accounting for 0.70% (95% confidence interval [CI]: −0.33 to 1.69), 1.34% (95% CI: −0.14 to 2.73), 1.99% (95% CI: 0.29–3.57), and 2.73% (95% CI: 0.76–4.50) of total deaths for Q1–Q4 (first quartile–fourth quartile) of TV. The modification effects of TV varied geographically. Central Europe had the highest attributable fractions (AFs), corresponding to 7.68% (95% CI: 5.25–9.89) of total deaths for Q4 of TV, while the lowest AFs were observed in North America, with the values for Q4 of 1.74% (95% CI: −0.09 to 3.39). TV had a significant modification effect on the heat-mortality association, causing a higher heat-related mortality burden with increments of TV. Implementing targeted strategies against heat exposure and fluctuant temperatures simultaneously would benefit public health.
  •  
10.
  • Wu, Yao, et al. (författare)
  • Global, regional, and national burden of mortality associated with short-term temperature variability from 2000–19 : a three-stage modelling study
  • 2022
  • Ingår i: The Lancet Planetary Health. - : Elsevier. - 2542-5196. ; 6:5, s. e410-e421
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Increased mortality risk is associated with short-term temperature variability. However, to our knowledge, there has been no comprehensive assessment of the temperature variability-related mortality burden worldwide. In this study, using data from the MCC Collaborative Research Network, we first explored the association between temperature variability and mortality across 43 countries or regions. Then, to provide a more comprehensive picture of the global burden of mortality associated with temperature variability, global gridded temperature data with a resolution of 0·5° × 0·5° were used to assess the temperature variability-related mortality burden at the global, regional, and national levels. Furthermore, temporal trends in temperature variability-related mortality burden were also explored from 2000–19.Methods: In this modelling study, we applied a three-stage meta-analytical approach to assess the global temperature variability-related mortality burden at a spatial resolution of 0·5° × 0·5° from 2000–19. Temperature variability was calculated as the SD of the average of the same and previous days’ minimum and maximum temperatures. We first obtained location-specific temperature variability related-mortality associations based on a daily time series of 750 locations from the Multi-country Multi-city Collaborative Research Network. We subsequently constructed a multivariable meta-regression model with five predictors to estimate grid-specific temperature variability related-mortality associations across the globe. Finally, percentage excess in mortality and excess mortality rate were calculated to quantify the temperature variability-related mortality burden and to further explore its temporal trend over two decades.Findings: An increasing trend in temperature variability was identified at the global level from 2000 to 2019. Globally, 1 753 392 deaths (95% CI 1 159 901–2 357 718) were associated with temperature variability per year, accounting for 3·4% (2·2–4·6) of all deaths. Most of Asia, Australia, and New Zealand were observed to have a higher percentage excess in mortality than the global mean. Globally, the percentage excess in mortality increased by about 4·6% (3·7–5·3) per decade. The largest increase occurred in Australia and New Zealand (7·3%, 95% CI 4·3–10·4), followed by Europe (4·4%, 2·2–5·6) and Africa (3·3, 1·9–4·6).Interpretation: Globally, a substantial mortality burden was associated with temperature variability, showing geographical heterogeneity and a slightly increasing temporal trend. Our findings could assist in raising public awareness and improving the understanding of the health impacts of temperature variability. Funding: Australian Research Council, Australian National Health & Medical Research Council.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy