SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vihinen Mauno) ;lar1:(ki)"

Sökning: WFRF:(Vihinen Mauno) > Karolinska Institutet

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Estupinan, HY, et al. (författare)
  • BTK gatekeeper residue variation combined with cysteine 481 substitution causes super-resistance to irreversible inhibitors acalabrutinib, ibrutinib and zanubrutinib
  • 2021
  • Ingår i: Leukemia. - : Springer Science and Business Media LLC. - 1476-5551 .- 0887-6924. ; 35:85, s. 1317-1329
  • Tidskriftsartikel (refereegranskat)abstract
    • Irreversible inhibitors of Bruton tyrosine kinase (BTK), pioneered by ibrutinib, have become breakthrough drugs in the treatment of leukemias and lymphomas. Resistance variants (mutations) occur, but in contrast to those identified for many other tyrosine kinase inhibitors, they affect less frequently the “gatekeeper” residue in the catalytic domain. In this study we carried out variation scanning by creating 11 substitutions at the gatekeeper amino acid, threonine 474 (T474). These variants were subsequently combined with replacement of the cysteine 481 residue to which irreversible inhibitors, such as ibrutinib, acalabrutinib and zanubrutinib, bind. We found that certain double mutants, such as threonine 474 to isoleucine (T474I) or methionine (T474M) combined with catalytically active cysteine 481 to serine (C481S), are insensitive to ≥16-fold the pharmacological serum concentration, and therefore defined as super-resistant to irreversible inhibitors. Conversely, reversible inhibitors showed a variable pattern, from resistance to no resistance, collectively demonstrating the structural constraints for different classes of inhibitors, which may affect their clinical application.
  •  
2.
  • Johansson, J., et al. (författare)
  • Gustavson syndrome is caused by an in-frame deletion in RBMX associated with potentially disturbed SH3 domain interactions
  • 2024
  • Ingår i: European Journal of Human Genetics. - : SPRINGERNATURE. - 1018-4813 .- 1476-5438. ; 32:3, s. 333-341
  • Tidskriftsartikel (refereegranskat)abstract
    • RNA binding motif protein X-linked (RBMX) encodes the heterogeneous nuclear ribonucleoprotein G (hnRNP G) that regulates splicing, sister chromatid cohesion and genome stability. RBMX knock down experiments in various model organisms highlight the gene's importance for brain development. Deletion of the RGG/RG motif in hnRNP G has previously been associated with Shashi syndrome, however involvement of other hnRNP G domains in intellectual disability remain unknown. In the current study, we present the underlying genetic and molecular cause of Gustavson syndrome. Gustavson syndrome was first reported in 1993 in a large Swedish five-generation family presented with profound X-linked intellectual disability and an early death. Extensive genomic analyses of the family revealed hemizygosity for a novel in-frame deletion in RBMX in affected individuals (NM_002139.4; c.484_486del, p.(Pro162del)). Carrier females were asymptomatic and presented with skewed X-chromosome inactivation, indicating silencing of the pathogenic allele. Affected individuals presented minor phenotypic overlap with Shashi syndrome, indicating a different disease-causing mechanism. Investigation of the variant effect in a neuronal cell line (SH-SY5Y) revealed differentially expressed genes enriched for transcription factors involved in RNA polymerase II transcription. Prediction tools and a fluorescence polarization assay imply a novel SH3-binding motif of hnRNP G, and potentially a reduced affinity to SH3 domains caused by the deletion. In conclusion, we present a novel in-frame deletion in RBMX segregating with Gustavson syndrome, leading to disturbed RNA polymerase II transcription, and potentially reduced SH3 binding. The results indicate that disruption of different protein domains affects the severity of RBMX-associated intellectual disabilities.
  •  
3.
  • Naeem, Aishath, et al. (författare)
  • Pirtobrutinib targets BTK C481S in ibrutinib-resistant CLL but second-site BTK mutations lead to resistance
  • 2023
  • Ingår i: Blood Advances. - : American Society of Hematology. - 2473-9529 .- 2473-9537. ; 7:9, s. 1929-1943
  • Tidskriftsartikel (refereegranskat)abstract
    • Covalent inhibitors of Bruton tyrosine kinase (BTK) have transformed the therapy of chronic lymphocytic leukemia (CLL), but continuous therapy has been complicated by the development of resistance. The most common resistance mechanism in patients whose disease progresses on covalent BTK inhibitors (BTKis) is a mutation in the BTK 481 cysteine residue to which the inhibitors bind covalently. Pirtobrutinib is a highly selective, noncovalent BTKi with substantial clinical activity in patients whose disease has progressed on covalent BTKi, regardless of BTK mutation status. Using in vitro ibrutinib-resistant models and cells from patients with CLL, we show that pirtobrutinib potently inhibits BTK-mediated functions including B-cell receptor (BCR) signaling, cell viability, and CCL3/CCL4 chemokine production in both BTK wild-type and C481S mutant CLL cells. We demonstrate that primary CLL cells from responding patients on the pirtobrutinib trial show reduced BCR signaling, cell survival, and CCL3/CCL4 chemokine secretion. At time of progression, these primary CLL cells show increasing resistance to pirtobrutinib in signaling inhibition, cell viability, and cytokine production. We employed longitudinal whole-exome sequencing on 2 patients whose disease progressed on pirtobrutinib and identified selection of alternative-site BTK mutations, providing clinical evidence that secondary BTK mutations lead to resistance to noncovalent BTKis.
  •  
4.
  • Schaafsma, Gerard C.P., et al. (författare)
  • BTKbase, Bruton Tyrosine Kinase Variant Database in X-Linked Agammaglobulinemia : Looking Back and Ahead
  • 2023
  • Ingår i: Human Mutation. - 1059-7794. ; 2023
  • Tidskriftsartikel (refereegranskat)abstract
    • BTKbase is an international database for disease-causing variants in Bruton tyrosine kinase (BTK) leading to X-linked agammaglobulinemia (XLA), a rare primary immunodeficiency of antibody production. BTKbase was established in 1994 as one of the first publicly available variation databases. The number of cases has more than doubled since the last update; it now contains information for 2310 DNA variants in 2291 individuals. 1025 of the DNA variants are unique. The human genome contains more than 500 protein kinases, among which BTK has the largest number of unique disease-causing variants. The current version of BTKbase has numerous novel features: the database has been reformatted, it has moved to LOVD database management system, it has been internally harmonized, etc. Systematics and standardization have been increased, including Variation Ontology annotations for variation types. There are some regions with lower than expected variation frequency and some hotspots for variations. BTKbase contains, in addition to variant descriptions at DNA, RNA and protein levels, also laboratory parameters and clinical features for many patients. BTKbase has served clinical and research communities in the diagnosis of XLA cases and provides general insight into effects of variations, especially in signalling pathways. Amino acid substitutions and their effects were investigated, predicted, and visualized at 3D level in the protein domains. BTKbase is freely available.
  •  
5.
  • Valiaho, Jouni, et al. (författare)
  • Characterization of All Possible Single-Nucleotide Change Caused Amino Acid Substitutions in the Kinase Domain of Bruton Tyrosine Kinase
  • 2015
  • Ingår i: Human Mutation. - : Hindawi Limited. - 1059-7794 .- 1098-1004. ; 36:6, s. 638-647
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge about features distinguishing deleterious and neutral variations is crucial for interpretation of novel variants. Bruton tyrosine kinase (BTK) contains the highest number of unique disease-causing variations among the human protein kinases, still it is just 10% of all the possible single-nucleotide substitution-caused amino acid variations (SNAVs). In the BTK kinase domain (BTK-KD) can appear altogether 1,495 SNAVs. We investigated them all with bioinformatic and protein structure analysis methods. Most disease-causing variations affect conserved and buried residues disturbing protein stability. Minority of exposed residues is conserved, but strongly tied to pathogenicity. Sixty-seven percent of variations are predicted to be harmful. In 39% of the residues, all the variants are likely harmful, whereas in 10% of sites, all the substitutions are tolerated. Results indicate the importance of the entire kinase domain, involvement in numerous interactions, and intricate functional regulation by conformational change. These results can be extended to other protein kinases and organisms.
  •  
6.
  • Zain, Rula, et al. (författare)
  • Structure-Function Relationships of Covalent and Non-Covalent BTK Inhibitors
  • 2021
  • Ingår i: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 12
  • Forskningsöversikt (refereegranskat)abstract
    • Low-molecular weight chemical compounds have a longstanding history as drugs. Target specificity and binding efficiency represent major obstacles for small molecules to become clinically relevant. Protein kinases are attractive cellular targets; however, they are challenging because they present one of the largest protein families and share structural similarities. Bruton tyrosine kinase (BTK), a cytoplasmic protein tyrosine kinase, has received much attention as a promising target for the treatment of B-cell malignancies and more recently autoimmune and inflammatory diseases. Here we describe the structural properties and binding modes of small-molecule BTK inhibitors, including irreversible and reversible inhibitors. Covalently binding compounds, such as ibrutinib, acalabrutinib and zanubrutinib, are discussed along with non-covalent inhibitors fenebrutinib and RN486. The focus of this review is on structure-function relationships.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy