SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Virtanen Tarmo) "

Sökning: WFRF:(Virtanen Tarmo)

  • Resultat 1-10 av 11
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abbott, Benjamin W., et al. (författare)
  • Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire : an expert assessment
  • 2016
  • Ingår i: Environmental Research Letters. - : IOP Publishing: Open Access Journals / IOP Publishing. - 1748-9326 .- 1748-9326. ; 11:3
  • Tidskriftsartikel (refereegranskat)abstract
    • As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%-85% of permafrost carbon release can still be avoided if human emissions are actively reduced.
  •  
2.
  • Hugelius, Gustaf, 1980-, et al. (författare)
  • Estimating soil organic carbon storage in periglacial terrain at very high resolution; a case study from the European Russian Arctic
  • 2010
  • Konferensbidrag (övrigt vetenskapligt)abstract
    •   1    Introduction   While recent research advances have significantly increased our understanding of SOC storage in the periglacial landscape, there are still many uncertainties. Local scale studies have shown that the landscape distribution of SOC is highly heterogeneous (e.g. Hugelius and Kuhry, 2009). Some landscape components, such as peat deposits or cryoturbated soil horizons, can dominate local SOC storage.  However, there are no clear trends in landscape distribution and regional differences emerge (Kuhry et al., in prep.). We have conducted a very high resolution study of SOC storage in four study sites (Seida and Rogovaya 1-3) in discontinuous permafrost terrain, European Russian Arctic. Point pedon data is upscaled to areal coverage using two different upscaling tools, land cover classifications and soil maps. 2      Methods 2.1     Soil sampling and upscaling Soil sampling was performed (i) along landscape transects and (ii) according to a weighted, stratified random sampling program. Sampling was done in 10 cm increments to 1 m depth or to full depth of peat deposits in a total of 94 sites. Point pedon data is upscaled to areal coverage using two different upscaling tools: 1. Thematic land cover classifications based on multiresolution segmentation of high-resolution Quickbird imagery (2.44 m raster resolution, 17 separate land cover classes, software Definiens Professional 5.0) and: 2. High resolution thematic soil maps following World Reference Base for Soil Resources terminology (20 distinct soil types, median polygon size 1960 m2). Mean SOC storage for each land cover or soil type is multiplied by the areal coverage within the study areas to calculate total storage and landscape partitioning of SOC. Figure 1 illustrates the spatial resolution of the two upscaling tools. It also shows 4 pixels of Landsat TM resolution, representing the highest resolution of previous land cover based SOC storage studies in permafrost terrain. 3      results   Preliminary calculations show that the estimates in the four different areas are between 38-58 kg C m-2 for land cover upscaling and between 37-49 kg C m-2 for soil map upscaling. Both upscaling methods yield higher estimates than what has previously been reported for this area (Hugelius and Kuhry, 2009). A majority of SOC is stored in Cryic Histosols or Folic/Histic Cryosols. Contiguous permafrost peat plateaus are present in all study areas, covering ~20-30 % of the landscape. The mean depth of peat deposits in the four plateaus is between 150-250 cm, but it is highly variable (recorded range 30-420 cm). There is no evidence of any significant deep burial of SOC through cryoturbation processes. References Hugelius G. and Kuhry P. 2009, Landscape partitioning and environmental gradient analyses of soil organic carbon in a permafrost environment. Global Biogeochemical Cycles, 23, GB3006, doi:10.1029/2008GB003419. Kuhry, P., Dorrepaal, E., Hugelius G., Schuur, E.A.G. and Tarnocai C., Potential remobilization of permafrost carbon under future global warming. Permafrost and Periglacial Processes, Submitted.
  •  
3.
  • Hugelius, Gustaf, et al. (författare)
  • High-resolution mapping of ecosystem carbon storage and potential effects of permafrost thaw in periglacial terrain, European Russian Arctic
  • 2011
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 116, s. G03024-
  • Tidskriftsartikel (refereegranskat)abstract
    • This study describes detailed partitioning of phytomass carbon (C) and soil organic carbon (SOC) for four study areas in discontinuous permafrost terrain, Northeast European Russia. The mean aboveground phytomass C storage is 0.7 kg C m(-2). Estimated landscape SOC storage in the four areas varies between 34.5 and 47.0 kg C m(-2) with LCC (land cover classification) upscaling and 32.5-49.0 kg C m(-2) with soil map upscaling. A nested upscaling approach using a Landsat thematic mapper land cover classification for the surrounding region provides estimates within 5 +/- 5% of the local high-resolution estimates. Permafrost peat plateaus hold the majority of total and frozen SOC, especially in the more southern study areas. Burying of SOC through cryoturbation of O- or A-horizons contributes between 1% and 16% (mean 5%) of total landscape SOC. The effect of active layer deepening and thermokarst expansion on SOC remobilization is modeled for one of the four areas. The active layer thickness dynamics from 1980 to 2099 is modeled using a transient spatially distributed permafrost model and lateral expansion of peat plateau thermokarst lakes is simulated using geographic information system analyses. Active layer deepening is expected to increase the proportion of SOC affected by seasonal thawing from 29% to 58%. A lateral expansion of 30 m would increase the amount of SOC stored in thermokarst lakes/fens from 2% to 22% of all SOC. By the end of this century, active layer deepening will likely affect more SOC than thermokarst expansion, but the SOC stores vulnerable to thermokarst are less decomposed.
  •  
4.
  • Hugelius, Gustaf, 1980-, et al. (författare)
  • High‐resolution mapping of ecosystem carbon storageand potential effects of permafrost thaw in periglacialterrain, European Russian Arctic
  • 2011
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 116
  • Tidskriftsartikel (refereegranskat)abstract
    • This study describes detailed partitioning of phytomass carbon (C) and soil organiccarbon (SOC) for four study areas in discontinuous permafrost terrain, Northeast EuropeanRussia. The mean aboveground phytomass C storage is 0.7 kg C m−2. Estimated landscapeSOC storage in the four areas varies between 34.5 and 47.0 kg C m−2 with LCC (landcover classification) upscaling and 32.5–49.0 kg C m−2 with soil map upscaling. A nestedupscaling approach using a Landsat thematic mapper land cover classification for thesurrounding region provides estimates within 5 ± 5% of the local high‐resolutionestimates. Permafrost peat plateaus hold the majority of total and frozen SOC, especially inthe more southern study areas. Burying of SOC through cryoturbation of O‐ or A‐horizonscontributes between 1% and 16% (mean 5%) of total landscape SOC. The effect ofactive layer deepening and thermokarst expansion on SOC remobilization is modeled forone of the four areas. The active layer thickness dynamics from 1980 to 2099 is modeledusing a transient spatially distributed permafrost model and lateral expansion of peatplateau thermokarst lakes is simulated using geographic information system analyses.Active layer deepening is expected to increase the proportion of SOC affected by seasonalthawing from 29% to 58%. A lateral expansion of 30 m would increase the amount ofSOC stored in thermokarst lakes/fens from 2% to 22% of all SOC. By the end of thiscentury, active layer deepening will likely affect more SOC than thermokarst expansion,but the SOC stores vulnerable to thermokarst are less decomposed.
  •  
5.
  • Hugelius, Gustaf, et al. (författare)
  • Soil Organic Carbon Pools in a Periglacial Landscape; a Case Study from the Central Canadian Arctic
  • 2010
  • Ingår i: Permafrost and Periglacial Processes. - 1045-6740 .- 1099-1530. ; 21:1, s. 16-29
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated total storage and landscape partitioning of soil organic carbon (SOC) in continuous permafrost terrain, central Canadian Arctic. The study is based on soil chemical analyses of pedons sampled to 1-m depth at 35 individual sites along three transects. Radiocarbon dating of cryoturbated soil pockets, basal peat and fossil wood shows that cryoturbation processes have been occurring since the Middle Holocene and that peat deposits started to accumulate in a forest-tundra environment where spruce was present (∼6000 cal yrs BP). Detailed partitioning of SOC into surface organic horizons, cryoturbated soil pockets and non-cryoturbated mineral soil horizons is calculated (with storage in active layer and permafrost calculated separately) and explored using principal component analysis. The detailed partitioning and mean storage of SOC in the landscape are estimated from transect vegetation inventories and a land cover classification based on a Landsat satellite image. Mean SOC storage in the 0–100-cm depth interval is 33.8 kg C m−2, of which 11.8 kg C m−2 is in permafrost. Fifty-six per cent of the total SOC mass is stored in peatlands (mainly bogs), but cryoturbated soil pockets in Turbic Cryosols also contribute significantly (17%). Elemental C/N ratios indicate that this cryoturbated soil organic matter (SOM) decomposes more slowly than SOM in surface O-horizons.
  •  
6.
  •  
7.
  •  
8.
  • Muster, Sina (författare)
  • PeRL : a circum-Arctic Permafrost Region Pond and Lake database
  • 2017
  • Ingår i: Earth System Science Data. - 1866-3508 .- 1866-3516. ; 9:1, s. 317-348
  • Tidskriftsartikel (refereegranskat)abstract
    • Ponds and lakes are abundant in Arctic permafrost lowlands. They play an important role in Arctic wetland ecosystems by regulating carbon, water, and energy fluxes and providing freshwater habitats. However, ponds, i. e., waterbodies with surface areas smaller than 1.0 x 10(4) m(2), have not been inventoried on global and regional scales. The Permafrost Region Pond and Lake (PeRL) database presents the results of a circum-Arctic effort to map ponds and lakes from modern (2002-2013) high-resolution aerial and satellite imagery with a resolution of 5m or better. The database also includes historical imagery from 1948 to 1965 with a resolution of 6m or better. PeRL includes 69 maps covering a wide range of environmental conditions from tundra to boreal regions and from continuous to discontinuous permafrost zones. Waterbody maps are linked to regional permafrost landscape maps which provide information on permafrost extent, ground ice volume, geology, and lithology. This paper describes waterbody classification and accuracy, and presents statistics of waterbody distribution for each site. Maps of permafrost landscapes in Alaska, Canada, and Russia are used to extrapolate waterbody statistics from the site level to regional landscape units. PeRL presents pond and lake estimates for a total area of 1.4 x 10(6) km(2) across the Arctic, about 17% of the Arctic lowland (<300ma. s.l.) land surface area. PeRL waterbodies with sizes of 1.0 x 10(6) m(2) down to 1.0 x 10(2) m(2) contributed up to 21% to the total water fraction. Waterbody density ranged from 1.0 x 10 to 9.4 x 10(1) km(-2). Ponds are the dominant waterbody type by number in all landscapes representing 45-99% of the total waterbody number. The implementation of PeRL size distributions in land surface models will greatly improve the investigation and projection of surface inundation and carbon fluxes in permafrost lowlands. Waterbody maps, study area boundaries, and maps of regional permafrost landscapes including detailed metadata are available at https://doi.pangaea.de/10.1594/PANGAEA.868349.
  •  
9.
  • Treat, Claire C., et al. (författare)
  • Tundra landscape heterogeneity, not interannual variability, controls the decadal regional carbon balance in the Western Russian Arctic
  • 2018
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 24:11, s. 5188-5204
  • Tidskriftsartikel (refereegranskat)abstract
    • Across the Arctic, the net ecosystem carbon (C) balance of tundra ecosystems is highly uncertain due to substantial temporal variability of C fluxes and to landscape heterogeneity. We modeled both carbon dioxide (CO2) and methane (CH4) fluxes for the dominant land cover types in a ~100-km2 sub-Arctic tundra region in northeast European Russia for the period of 2006–2015 using process-based biogeochemical models. Modeled net annual CO2 fluxes ranged from −300 g C m−2 year−1 [net uptake] in a willow fen to 3 g C m−2 year−1 [net source] in dry lichen tundra. Modeled annual CH4 emissions ranged from −0.2 to 22.3 g C m−2 year−1 at a peat plateau site and a willow fen site, respectively. Interannual variability over the decade was relatively small (20%–25%) in comparison with variability among the land cover types (150%). Using high-resolution land cover classification, the region was a net sink of atmospheric CO2 across most land cover types but a net source of CH4 to the atmosphere due to high emissions from permafrost-free fens. Using a lower resolution for land cover classification resulted in a 20%–65% underestimation of regional CH4 flux relative to high-resolution classification and smaller (10%) overestimation of regional CO2 uptake due to the underestimation of wetland area by 60%. The relative fraction of uplands versus wetlands was key to determining the net regional C balance at this and other Arctic tundra sites because wetlands were hot spots for C cycling in Arctic tundra ecosystems.
  •  
10.
  • Virkkala, Anna Maria, et al. (författare)
  • The current state of CO2 flux chamber studies in the Arctic tundra : a review
  • Ingår i: Progress in Physical Geography. - : SAGE Publications. - 0309-1333. ; 42:2, s. 162-184
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic tundra plays an important role in the carbon cycle as it stores 50% of global soil organic carbon reservoirs. The processes (fluxes) regulating these stocks are predicted to change due to direct and indirect effects of climate change. Understanding the current and future carbon balance calls for a summary of the level of knowledge regarding chamber-derived carbon dioxide (CO2) flux studies. Here, we describe progress from recently (2000–2016) published studies of growing-season CO2 flux chamber measurements, namely GPP (gross primary production), ER (ecosystem respiration), and NEE (net ecosystem exchange), in the tundra region. We review the study areas and designs along with the explanatory environmental drivers used. Most of the studies were conducted in Alaska and Fennoscandia, and we stress the need for measuring fluxes in other tundra regions, particularly in more extreme climatic, productivity, and soil conditions. Soil respiration and other greenhouse gas measurements were seldom included in the studies. Although most of the environmental drivers of CO2 fluxes have been relatively well investigated (such as the effect of vegetation type and soil microclimate on fluxes), soil nutrients, other greenhouse gases and disturbance regimes require more research as they might define the future carbon balance. Particular attention should be paid to the effects of shrubification, geomorphology, and other disturbance effects such as fire events, and disease and herbivore outbreaks. An improved conceptual framework and understanding of underlying processes of biosphere–atmosphere CO2 exchange will provide more information on carbon cycling in the tundra.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11
  • [1]2Nästa
Typ av publikation
tidskriftsartikel (8)
konferensbidrag (3)
Typ av innehåll
refereegranskat (8)
övrigt vetenskapligt (3)
Författare/redaktör
Luoto, Miska (1)
Abbott, Benjamin W. (1)
Jones, Jeremy B. (1)
Schuur, Edward A. G. (1)
Chapin, F. Stuart, I ... (1)
Bowden, William B. (1)
visa fler...
Bret-Harte, M. Syndo ... (1)
Epstein, Howard E. (1)
Flannigan, Michael D ... (1)
Harms, Tamara K. (1)
Hollingsworth, Teres ... (1)
Mack, Michelle C. (1)
McGuire, A. David (1)
Natali, Susan M. (1)
Rocha, Adrian V. (1)
Tank, Suzanne E. (1)
Turetsky, Merritt R. (1)
Vonk, Jorien E. (1)
Wickland, Kimberly P ... (1)
Aiken, George R. (1)
Alexander, Heather D ... (1)
Amon, Rainer M. W. (1)
Benscoter, Brian W. (1)
Bergeron, Yves (1)
Bishop, Kevin (1)
Blarquez, Olivier (1)
Bond-Lamberty, Ben (1)
Breen, Amy L. (1)
Buffam, Ishi (1)
Cai, Yihua (1)
Carcaillet, Christop ... (1)
Carey, Sean K. (1)
Chen, Jing M. (1)
Chen, Han Y. H. (1)
Christensen, Torben ... (1)
Cooper, Lee W. (1)
Cornelissen, J. Hans ... (1)
de Groot, William J. (1)
DeLuca, Thomas H. (1)
Dorrepaal, Ellen (1)
Fetcher, Ned (1)
Finlay, Jacques C. (1)
Forbes, Bruce C. (1)
French, Nancy H. F. (1)
Gauthier, Sylvie (1)
Girardin, Martin P. (1)
Goetz, Scott J. (1)
Goldammer, Johann G. (1)
Gough, Laura (1)
Grogan, Paul (1)
visa färre...
Lärosäte
Stockholms universitet (10)
Lunds universitet (2)
Umeå universitet (1)
Språk
Engelska (11)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (9)
Lantbruksvetenskap (1)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy