SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vogel W) ;pers:(Besson D. Z.)"

Sökning: WFRF:(Vogel W) > Besson D. Z.

  • Resultat 1-10 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2017
  • Ingår i: Physical Review D. - 2470-0010 .- 2470-0029. ; 96:2
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Aartsen, M. G., et al. (författare)
  • Multiwavelength follow-up of a rare IceCube neutrino multiplet
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 607
  • Tidskriftsartikel (refereegranskat)abstract
    • On February 17, 2016, the IceCube real-time neutrino search identified, for the first time, three muon neutrino candidates arriving within 100 s of one another, consistent with coming from the same point in the sky. Such a triplet is expected once every 13.7 years as a random coincidence of background events. However, considering the lifetime of the follow-up program the probability of detecting at least one triplet from atmospheric background is 32%. Follow-up observatories were notified in order to search for an electromagnetic counterpart. Observations were obtained by Swift's X-ray telescope, by ASAS-SN, LCO and MASTER at optical wavelengths, and by VERITAS in the very-high-energy gamma-ray regime. Moreover, the Swift BAT serendipitously observed the location 100 s after the first neutrino was detected, and data from the Fermi LAT and HAWC observatory were analyzed. We present details of the neutrino triplet and the follow-up observations. No likely electromagnetic counterpart was detected, and we discuss the implications of these constraints on candidate neutrino sources such as gamma-ray bursts, core-collapse supernovae and active galactic nucleus flares. This study illustrates the potential of and challenges for future follow-up campaigns.
  •  
3.
  • Aartsen, M. G., et al. (författare)
  • A Search for Neutrino Emission from Fast Radio Bursts with Six Years of IceCube Data
  • 2018
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 857:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a search for coincidence between IceCube TeV neutrinos and fast radio bursts (FRBs). During the search period from 2010 May 31 to 2016 May 12, a total of 29 FRBs with 13 unique locations have been detected in the whole sky. An unbinned maximum likelihood method was used to search for spatial and temporal coincidence between neutrinos and FRBs in expanding time windows, in both the northern and southern hemispheres. No significant correlation was found in six years of IceCube data. Therefore, we set upper limits on neutrino fluence emitted by FRBs as a function of time window duration. We set the most stringent limit obtained to date on neutrino fluence from FRBs with an E-2 energy spectrum assumed, which is 0.0021 GeV cm(-2) per burst for emission timescales up to similar to 10(2) s from the northern hemisphere stacking search.
  •  
4.
  • Aartsen, M. G., et al. (författare)
  • Constraints on Galactic Neutrino Emission with Seven Years of IceCube Data
  • 2017
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 849:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The origins of high-energy astrophysical neutrinos remain a mystery despite extensive searches for their sources. We present constraints from seven years of IceCube Neutrino Observatory muon data on the neutrino flux coming from the Galactic plane. This flux is expected from cosmic-ray interactions with the interstellar medium or near localized sources. Two methods were developed to test for a spatially extended flux from the entire plane, both of which are maximum likelihood fits but with different signal and background modeling techniques. We consider three templates for Galactic neutrino emission based primarily on gamma-ray observations and models that cover a wide range of possibilities. Based on these templates and in the benchmark case of an unbroken E-2.5 power-law energy spectrum, we set 90% confidence level upper limits, constraining the possible Galactic contribution to the diffuse neutrino flux to be relatively small, less than 14% of the flux reported in Aartsen et al. above 1 TeV. A stacking method is also used to test catalogs of known high-energy Galactic gamma-ray sources.
  •  
5.
  • Aartsen, M. G., et al. (författare)
  • Measurement of Atmospheric Neutrino Oscillations at 6-56 GeV with IceCube DeepCore
  • 2018
  • Ingår i: Physical Review Letters. - : AMER PHYSICAL SOC. - 0031-9007 .- 1079-7114. ; 120:7
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a measurement of the atmospheric neutrino oscillation parameters using three years of data from the IceCube Neutrino Observatory. The DeepCore infill array in the center of IceCube enables the detection and reconstruction of neutrinos produced by the interaction of cosmic rays in Earth's atmosphere at energies as low as similar to 5 GeV. That energy threshold permits measurements of muon neutrino disappearance, over a range of baselines up to the diameter of the Earth, probing the same range of L/E-v. as long-baseline experiments but with substantially higher- energy neutrinos. This analysis uses neutrinos from the full sky with reconstructed energies from 5.6 to 56 GeV. We measure Delta m(32)(2) = 2.31(-0.13)(+0.11) x 10(-3) eV(2) and sin(2) theta(23) = 0.51(- 0.09)(+0.07), assuming normal neutrino mass ordering. These results are consistent with, and of similar precision to, those from accelerator- and reactor-based experiments.
  •  
6.
  • Aartsen, M. G., et al. (författare)
  • Measurement of the multi-TeV neutrino interaction cross-section with IceCube using Earth absorption
  • 2017
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 551:7682, s. 596-600
  • Tidskriftsartikel (refereegranskat)abstract
    • Neutrinos interact only very weakly, so they are extremely penetrating. The theoretical neutrino-nucleon interaction cross-section, however, increases with increasing neutrino energy, and neutrinos with energies above 40 teraelectronvolts (TeV) are expected to be absorbed as they pass through the Earth. Experimentally, the cross-section has been determined only at the relatively low energies (below 0.4 TeV) that are available at neutrino beams fromaccelerators(1,2). Here we report a measurement of neutrino absorption by the Earth using a sample of 10,784 energetic upward-going neutrino-induced muons. The flux of high-energy neutrinos transiting long paths through the Earth is attenuated compared to a reference sample that follows shorter trajectories. Using a fit to the two-dimensional distribution of muon energy and zenith angle, we determine the neutrino-nucleon interaction cross-section for neutrino energies 6.3-980 TeV, more than an order of magnitude higher than previous measurements. The measured cross-section is about 1.3 times the prediction of the standard model(3), consistent with the expectations for charged-and neutral-current interactions. We do not observe a large increase in the crosssection with neutrino energy, in contrast with the predictions of some theoretical models, including those invoking more compact spatial dimensions(4) or the production of leptoquarks(5). This cross-section measurement can be used to set limits on the existence of some hypothesized beyond-standard-model particles, including leptoquarks.
  •  
7.
  • Aartsen, M. G., et al. (författare)
  • Neutrino interferometry for high-precision tests of Lorentz symmetry with IceCube
  • 2018
  • Ingår i: Nature Physics. - : NATURE PUBLISHING GROUP. - 1745-2473 .- 1745-2481. ; 14:9, s. 961-966
  • Tidskriftsartikel (refereegranskat)abstract
    • Lorentz symmetry is a fundamental spacetime symmetry underlying both the standard model of particle physics and general relativity. This symmetry guarantees that physical phenomena are observed to be the same by all inertial observers. However, unified theories, such as string theory, allow for violation of this symmetry by inducing new spacetime structure at the quantum gravity scale. Thus, the discovery of Lorentz symmetry violation could be the first hint of these theories in nature. Here we report the results of the most precise test of spacetime symmetry in the neutrino sector to date. We use high-energy atmospheric neutrinos observed at the IceCube Neutrino Observatory to search for anomalous neutrino oscillations as signals of Lorentz violation. We find no evidence for such phenomena. This allows us to constrain the size of the dimension-four operator in the standard-model extension for Lorentz violation to the 10(-28) level and to set limits on higher-dimensional operators in this framework. These are among the most stringent limits on Lorentz violation set by any physical experiment.
  •  
8.
  • Aartsen, M. G., et al. (författare)
  • Search for neutrinos from dark matter self-annihilations in the center of the Milky Way with 3 years of IceCube/DeepCore
  • 2017
  • Ingår i: European Physical Journal C. - : SPRINGER. - 1434-6044 .- 1434-6052. ; 77:9
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a search for a neutrino signal from dark matter self-annihilations in the Milky Way using the Ice-Cube Neutrino Observatory (IceCube). In 1005 days of data we found no significant excess of neutrinos over the background of neutrinos produced in atmospheric air showers from cosmic ray interactions. We derive upper limits on the velocity averaged product of the darkmatter self-annihilation cross section and the relative velocity of the dark matter particles . Upper limits are set for darkmatter particle candidate masses ranging from 10GeV up to 1TeV while considering annihilation through multiple channels. This work sets the most stringent limit on a neutrino signal from dark matter with mass between 10 and 100GeV, with a limit of 1.18 . 10-23 cm(3)s(-1) for 100GeV dark matter particles self-annihilating via iota(+)iota(-) t-to neutrinos (assuming the Navarro-Frenk-White dark matter halo profile).
  •  
9.
  • Aartsen, M. G., et al. (författare)
  • Search for nonstandard neutrino interactions with IceCube DeepCore
  • 2018
  • Ingår i: Physical Review D. - : AMER PHYSICAL SOC. - 2470-0010 .- 2470-0029. ; 97:7
  • Tidskriftsartikel (refereegranskat)abstract
    • As atmospheric neutrinos propagate through the Earth, vacuumlike oscillations are modified by Standard Model neutral-and charged-current interactions with electrons. Theories beyond the Standard Model introduce heavy, TeV-scale bosons that can produce nonstandard neutrino interactions. These additional interactions may modify the Standard Model matter effect producing a measurable deviation from the prediction for atmospheric neutrino oscillations. The result described in this paper constrains nonstandard interaction parameters, building upon a previous analysis of atmospheric muon-neutrino disappearance with three years of IceCube DeepCore data. The best fit for the muon to tau flavor changing term is epsilon(mu tau) = -0.0005, with a 90% C.L. allowed range of -0.0067 < epsilon(mu tau) < 0.0081. This result is more restrictive than recent limits from other experiments for.mu t. Furthermore, our result is complementary to a recent constraint on epsilon(mu tau) using another publicly available IceCube high-energy event selection. Together, they constitute the world's best limits on nonstandard interactions in the mu - tau sector.
  •  
10.
  • Aartsen, M. G., et al. (författare)
  • Very high-energy gamma-ray follow-up program using neutrino triggers from IceCube
  • 2016
  • Ingår i: Journal of Instrumentation. - 1748-0221 .- 1748-0221. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe and report the status of a neutrino-triggered program in IceCube that generates real-time alerts for gamma-ray follow-up observations by atmospheric-Cherenkov telescopes (MAGIC and VERITAS). While IceCube is capable of monitoring the whole sky continuously, high-energy gamma-ray telescopes have restricted fields of view and in general are unlikely to be observing a potential neutrino-flaring source at the time such neutrinos are recorded. The use of neutrino-triggered alerts thus aims at increasing the availability of simultaneous multi-messenger data during potential neutrino flaring activity, which can increase the discovery potential and constrain the phenomenological interpretation of the high-energy emission of selected source classes (e. g. blazars). The requirements of a fast and stable online analysis of potential neutrino signals and its operation are presented, along with first results of the program operating between 14 March 2012 and 31 December 2015.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy