SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Volk Alexander E.) "

Sökning: WFRF:(Volk Alexander E.)

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Akimoto, Chizuru, et al. (författare)
  • A blinded international study on the reliability of genetic testing for GGGGCC-repeat expansions in C9orf72 reveals marked differences in results among 14 laboratories
  • 2014
  • Ingår i: Journal of Medical Genetics. - : BMJ. - 0022-2593 .- 1468-6244. ; 51:6, s. 419-424
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The GGGGCC-repeat expansion in C9orf72 is the most frequent mutation found in patients with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Most of the studies on C9orf72 have relied on repeat-primed PCR (RP-PCR) methods for detection of the expansions. To investigate the inherent limitations of this technique, we compared methods and results of 14 laboratories. Methods The 14 laboratories genotyped DNA from 78 individuals (diagnosed with ALS or FTD) in a blinded fashion. Eleven laboratories used a combination of amplicon-length analysis and RP-PCR, whereas three laboratories used RP-PCR alone; Southern blotting techniques were used as a reference. Results Using PCR-based techniques, 5 of the 14 laboratories got results in full accordance with the Southern blotting results. Only 50 of the 78 DNA samples got the same genotype result in all 14 laboratories. There was a high degree of false positive and false negative results, and at least one sample could not be genotyped at all in 9 of the 14 laboratories. The mean sensitivity of a combination of amplicon-length analysis and RP-PCR was 95.0% (73.9-100%), and the mean specificity was 98.0% (87.5-100%). Overall, a sensitivity and specificity of more than 95% was observed in only seven laboratories. Conclusions Because of the wide range seen in genotyping results, we recommend using a combination of amplicon-length analysis and RP-PCR as a minimum in a research setting. We propose that Southern blotting techniques should be the gold standard, and be made obligatory in a clinical diagnostic setting.
  •  
2.
  • Gobel, K., et al. (författare)
  • Coulomb dissociation of 16O into 4He and 12C
  • 2020
  • Ingår i: Journal of Physics: Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 1668:1
  • Konferensbidrag (refereegranskat)abstract
    • We measured the Coulomb dissociation of 16O into 4He and 12C at the R3B setup in a first campaign within FAIR Phase 0 at GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt. The goal was to improve the accuracy of the experimental data for the 12C(a,?)16O fusion reaction and to reach lower center-ofmass energies than measured so far. The experiment required beam intensities of 109 16O ions per second at an energy of 500 MeV/nucleon. The rare case of Coulomb breakup into 12C and 4He posed another challenge: The magnetic rigidities of the particles are so close because of the same mass-To-charge-number ratio A/Z = 2 for 16O, 12C and 4He. Hence, radical changes of the R3B setup were necessary. All detectors had slits to allow the passage of the unreacted 16O ions, while 4He and 12C would hit the detectors' active areas depending on the scattering angle and their relative energies. We developed and built detectors based on organic scintillators to track and identify the reaction products with sufficient precision.
  •  
3.
  • Ingre, Caroline, 1977-, et al. (författare)
  • A novel phosphorylation site mutation in profilin 1 revealed in a large screen of US, Nordic and German amyotrophic lateral sclerosis/frontotemporal dementia cohorts
  • 2013
  • Ingår i: Neurobiology of Aging. - New York : Elsevier. - 0197-4580 .- 1558-1497. ; 34:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Profilin 1 is a central regulator of actin dynamics. Mutations in the gene profilin 1 (PFN1) have veryrecently been shown to be the cause of a subgroup of amyotrophic lateral sclerosis (ALS). Here, weperformed a large screen of US, Nordic, and German familial and sporadic ALS and frontotemporaldementia (FTLD) patients for PFN1 mutations to get further insight into the spectrum and pathogenicrelevance of this gene for the complete ALS/FTLD continuum. Four hundred twelve familial and 260sporadic ALS cases and 16 ALS/FTLD cases from Germany, the Nordic countries, and the United Stateswere screened for PFN1 mutations. Phenotypes of patients carrying PFN1 mutations were studied. Ina German ALS family we identified the novel heterozygous PFN1 mutation p.Thr109Met, which wasabsent in controls. This novel mutation abrogates a phosphorylation site in profilin 1. The recentlydescribed p.Gln117Gly sequence variant was found in another familial ALS patient from the United States.The ALS patients with mutations in PFN1 displayed spinal onset motor neuron disease without overtcognitive involvement. PFN1 mutations were absent in patients with motor neuron disease anddementia, and in patients with only FTLD. We provide further evidence that PFN1 mutations can causeALS as a Mendelian dominant trait. Patients carrying PFN1 mutations reported so far represent the“classic” ALS end of the ALS-FTLD spectrum. The novel p.Thr109Met mutation provides additional proofof-principle that mutant proteins involved in the regulation of cytoskeletal dynamics can cause motorneuron degeneration. Moreover, this new mutation suggests that fine-tuning of actin polymerization byphosphorylation of profilin 1 might be necessary for motor neuron survival.
  •  
4.
  • van Doormaal, Perry T. C., et al. (författare)
  • The role of de novo mutations in the development of amyotrophic lateral sclerosis
  • 2017
  • Ingår i: Human Mutation. - : John Wiley & Sons. - 1059-7794 .- 1098-1004. ; 38:11, s. 1534-1541
  • Tidskriftsartikel (refereegranskat)abstract
    • The genetic basis combined with the sporadic occurrence of amyotrophic lateral sclerosis (ALS) suggests a role of de novo mutations in disease pathogenesis. Previous studies provided some evidence for this hypothesis; however, results were conflicting: no genes with recurrent occurring de novo mutations were identified and different pathways were postulated. In this study, we analyzed whole-exome data from 82 new patient-parents trios and combined it with the datasets of all previously published ALS trios (173 trios in total). The per patient de novo rate was not higher than expected based on the general population (P = 0.40). We showed that these mutations are not part of the previously postulated pathways, and gene-gene interaction analysis found no enrichment of interacting genes in this group (P = 0.57). Also, we were able to show that the de novo mutations in ALS patients are located in genes already prone for de novo mutations (P < 1 x 10(-15)). Although the individual effect of rare de novo mutations in specific genes could not be assessed, our results indicate that, in contrast to previous hypothesis, de novo mutations in general do not impose a major burden on ALS risk.
  •  
5.
  •  
6.
  • Brenner, David, et al. (författare)
  • Hot-spot KIF5A mutations cause familial ALS
  • 2018
  • Ingår i: Brain. - : Oxford University Press. - 0006-8950 .- 1460-2156. ; 141, s. 688-697
  • Tidskriftsartikel (refereegranskat)abstract
    • Heterozygous missense mutations in the N-terminal motor or coiled-coil domains of the kinesin family member 5A (KIF5A) gene cause monogenic spastic paraplegia (HSP10) and Charcot-Marie-Tooth disease type 2 (CMT2). Moreover, heterozygous de novo frame-shift mutations in the C-terminal domain of KIF5A are associated with neonatal intractable myoclonus, a neurodevelopmental syndrome. These findings, together with the observation that many of the disease genes associated with amyotrophic lateral sclerosis disrupt cytoskeletal function and intracellular transport, led us to hypothesize that mutations in KIF5A are also a cause of amyotrophic lateral sclerosis. Using whole exome sequencing followed by rare variant analysis of 426 patients with familial amyotrophic lateral sclerosis and 6137 control subjects, we detected an enrichment of KIF5A splice-site mutations in amyotrophic lateral sclerosis (2/426 compared to 0/6137 in controls; P = 4.2 x 10-3), both located in a hot-spot in the C-terminus of the protein and predicted to affect splicing exon 27. We additionally show co-segregation with amyotrophic lateral sclerosis of two canonical splice-site mutations in two families. Investigation of lymphoblast cell lines from patients with KIF5A splice-site mutations revealed the loss of mutant RNA expression and suggested haploinsufficiency as the most probable underlying molecular mechanism. Furthermore, mRNA sequencing of a rare non-synonymous missense mutation (predicting p. Arg1007Gly) located in the C-terminus of the protein shortly upstream of the splice donor of exon 27 revealed defective KIF5A pre-mRNA splicing in respective patient-derived cell lines owing to abrogation of the donor site. Finally, the non-synonymous single nucleotide variant rs113247976 (minor allele frequency = 1.00% in controls, n = 6137), also located in the C-terminal region [p.(Pro986Leu) in exon 26], was significantly enriched in familial amyotrophic lateral sclerosis patients (minor allele frequency = 3.40%; P = 1.28 x 10-7). Our study demonstrates that mutations located specifically in a C-terminal hotspot of KIF5A can cause a classical amyotrophic lateral sclerosis phenotype, and underline the involvement of intracellular transport processes in amyotrophic lateral sclerosis pathogenesis.
  •  
7.
  •  
8.
  •  
9.
  • Freischmidt, Axel, et al. (författare)
  • Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia
  • 2015
  • Ingår i: Nature Neuroscience. - : Springer Science and Business Media LLC. - 1097-6256 .- 1546-1726. ; 18:5, s. 631-
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyotrophic lateral sclerosis (ALS) is a genetically heterogeneous neurodegenerative syndrome hallmarked by adult-onset loss of motor neurons. We performed exome sequencing of 252 familial ALS (fALS) and 827 control individuals. Gene-based rare variant analysis identified an exome-wide significant enrichment of eight loss-of-function (LoF) mutations in TBK1 (encoding TANK-binding kinase 1) in 13 fALS pedigrees. No enrichment of LoF mutations was observed in a targeted mutation screen of 1,010 sporadic ALS and 650 additional control individuals. Linkage analysis in four families gave an aggregate LOD score of 4.6. In vitro experiments confirmed the loss of expression of TBK1 LoF mutant alleles, or loss of interaction of the C-terminal TBK1 coiled-coil domain (CCD2) mutants with the TBK1 adaptor protein optineurin, which has been shown to be involved in ALS pathogenesis. We conclude that haploinsufficiency of TBK1 causes ALS and fronto-temporal dementia.
  •  
10.
  • Freischmidt, Axel, et al. (författare)
  • Serum microRNAs in patients with genetic amyotrophic lateral sclerosis and pre-manifest mutation carriers
  • 2014
  • Ingår i: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 137:11, s. 2938-2950
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge about the nature of pathomolecular alterations preceding onset of symptoms in amyotrophic lateral sclerosis is largely lacking. It could not only pave the way for the discovery of valuable therapeutic targets but might also govern future concepts of pre-manifest disease modifying treatments. MicroRNAs are central regulators of transcriptome plasticity and participate in pathogenic cascades and/or mirror cellular adaptation to insults. We obtained comprehensive expression profiles of microRNAs in the serum of patients with familial amyotrophic lateral sclerosis, asymptomatic mutation carriers and healthy control subjects. We observed a strikingly homogenous microRNA profile in patients with familial amyotrophic lateral sclerosis that was largely independent from the underlying disease gene. Moreover, we identified 24 significantly downregulated microRNAs in pre-manifest amyotrophic lateral sclerosis mutation carriers up to two decades or more before the estimated time window of disease onset; 91.7% of the downregulated microRNAs in mutation carriers overlapped with the patients with familial amyotrophic lateral sclerosis. Bioinformatic analysis revealed a consensus sequence motif present in the vast majority of downregulated microRNAs identified in this study. Our data thus suggest specific common denominators regarding molecular pathogenesis of different amyotrophic lateral sclerosis genes. We describe the earliest pathomolecular alterations in amyotrophic lateral sclerosis mutation carriers known to date, which provide a basis for the discovery of novel therapeutic targets and strongly argue for studies evaluating presymptomatic disease-modifying treatment in amyotrophic lateral sclerosis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy