Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Volkov Petr) "

Sökning: WFRF:(Volkov Petr)

  • Resultat 1-10 av 29
  • [1]23Nästa
Sortera/gruppera träfflistan
  • Nilsson, E., et al. (författare)
  • Altered DNA Methylation and Differential Expression of Genes Influencing Metabolism and Inflammation in Adipose Tissue From Subjects With Type 2 Diabetes
  • 2014
  • Ingår i: Diabetes. - : American Diabetes Association Inc.. - 0012-1797 .- 1939-327X. ; 63:9, s. 2962-2976
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetics, epigenetics, and environment may together affect the susceptibility for type 2 diabetes (T2D). Our aim was to dissect molecular mechanisms underlying T2D using genome-wide expression and DNA methylation data in adipose tissue from monozygotic twin pairs discordant for T2D and independent case-control cohorts. In adipose tissue from diabetic twins, we found decreased expression of genes involved in oxidative phosphorylation; carbohydrate, amino acid, and lipid metabolism; and increased expression of genes involved in inflammation and glycan degradation. The most differentially expressed genes included ELOVL6, GYS2, FADS1, SPP1 (OPN), CCL18, and IL1RN. We replicated these results in adipose tissue from an independent case-control cohort. Several candidate genes for obesity and T2D (e.g., IRS1 and VEGFA) were differentially expressed in discordant twins. We found a heritable contribution to the genome-wide DNA methylation variability in twins. Differences in methylation between monozygotic twin pairs discordant for T2D were subsequently modest. However, 15,627 sites, representing 7,046 genes including PPARG, KCNQ1, TCF7L2, and IRS1, showed differential DNA methylation in adipose tissue from unrelated subjects with T2D compared with control subjects. A total of 1,410 of these sites also showed differential DNA methylation in the twins discordant for T2D. For the differentially methylated sites, the heritability estimate was 0.28. We also identified copy number variants (CNVs) in monozygotic twin pairs discordant for T2D. Taken together, subjects with T2D exhibit multiple transcriptional and epigenetic changes in adipose tissue relevant to the development of the disease.
  • Gillberg, Linn, et al. (författare)
  • Adipose tissue transcriptomics and epigenomics in low birthweight men and controls : role of high-fat overfeeding
  • 2016
  • Ingår i: Diabetologia. - : Springer. - 0012-186X .- 1432-0428. ; 59:4, s. 799-812
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis Individuals who had a low birthweight (LBW) are at an increased risk of insulin resistance and type 2 diabetes when exposed to high-fat overfeeding (HFO). We studied genome-wide mRNA expression and DNA methylation in subcutaneous adipose tissue (SAT) after 5 days of HFO and after a control diet in 40 young men, of whom 16 had LBW. Methods mRNA expression was analysed using Affymetrix Human Gene 1.0 ST arrays and DNA methylation using Illumina 450K BeadChip arrays. Results We found differential DNA methylation at 53 sites in SAT from LBW vs normal birthweight (NBW) men (false discovery rate < 5%), including sites in the FADS2 and CPLX1 genes previously associated with type 2 diabetes. When we used reference-free cell mixture adjustments to potentially adjust for cell composition, 4,323 sites had differential methylation in LBW vs NBW men. However, no differences in SAT gene expression levels were identified between LBW and NBW men. In the combined group of all 40 participants, 3,276 genes (16.5%) were differentially expressed in SAT after HFO (false discovery rate < 5%) and there was no difference between LBW men and controls. The most strongly upregulated genes were ELOVL6, FADS2 and NNAT; in contrast, INSR, IRS2 and the SLC27A2 fatty acid transporter showed decreased expression after HFO. Interestingly, SLC27A2 expression correlated negatively with diabetes- and obesity-related traits in a replication cohort of 142 individuals. DNA methylation at 652 CpG sites (including in CDK5, IGFBP5 and SLC2A4) was altered in SAT after overfeeding in this and in another cohort. Conclusions/interpretation Young men who had a LBW exhibit epigenetic alterations in their adipose tissue that potentially influence insulin resistance and risk of type 2 diabetes. Short-term overfeeding influences gene transcription and, to some extent, DNA methylation in adipose tissue; there was no major difference in this response between LBW and control participants.
  • Perfilyev, Alexander, et al. (författare)
  • Impact of polyunsaturated and saturated fat overfeeding on the DNA-methylation pattern in human adipose tissue : A randomized controlled trial
  • 2017
  • Ingår i: American Journal of Clinical Nutrition. - : Oxford University Press. - 0002-9165 .- 1938-3207. ; 105:4, s. 991-1000
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Dietary fat composition can affect ectopic lipid accumulation and, thereby, insulin resistance. Diets that are high in saturated fatty acids (SFAs) or polyunsaturated fatty acids (PUFAs) have different metabolic responses. Objective: We investigated whether the epigenome of human adipose tissue is affected differently by dietary fat composition and general overfeeding in a randomized trial. Design: We studied the effects of 7 wk of excessive SFA (n = 17) or PUFA (n = 14) intake (+750 kcal/d) on the DNA methylation of ∼450,000 sites in human subcutaneous adipose tissue. Both diets resulted in similar body weight increases. We also combined the data from the 2 groups to examine the overall effect of overfeeding on the DNA methylation in adipose tissue. Results: The DNA methylation of 4875 Cytosine-phosphate-guanine (CpG) sites was affected differently between the 2 diets. Furthermore, both the SFA and PUFA diets increased the mean degree of DNA methylation in adipose tissue, particularly in promoter regions. However, although the mean methylation was changed in 1797 genes [e.g., alpha-ketoglutarate dependent dioxygenase (FTO), interleukin 6 (IL6), insulin receptor (INSR), neuronal growth regulator 1 (NEGR1), and proopiomelanocortin (POMC)] by PUFAs, only 125 genes [e.g., adiponectin, C1Q and collagen domain containing (ADIPOQ)] were changed by SFA overfeeding. In addition, the SFA diet significantly altered the expression of 28 transcripts [e.g., acyl-CoA oxidase 1 (ACOX1) and FAT atypical cadherin 1 (FAT1)], whereas the PUFA diet did not significantly affect gene expression. When the data from the 2 diet groups were combined, the mean methylation of 1444 genes, including fatty acid binding protein 1 (FABP1), fatty acid binding protein 2 (FABP2), melanocortin 2 receptor (MC2R), MC3R, PPARG coactivator 1 α (PPARGC1A), and tumor necrosis factor (TNF), was changed in adipose tissue by overfeeding. Moreover, the baseline DNA methylation of 12 CpG sites that was annotated to 9 genes [e.g., mitogen-activated protein kinase 7 (MAPK7), melanin concentrating hormone receptor 1 (MCHR1), and splicing factor SWAP homolog (SFRS8)] was associated with the degree of weight increase in response to extra energy intake. Conclusions: SFA overfeeding and PUFA overfeeding induce distinct epigenetic changes in human adipose tissue. In addition, we present data that suggest that baseline DNA methylation can predict weight increase in response to overfeeding in humans. This trial was registered at clinicaltrials.gov as NCT01427140. Am J Clin Nutr 2017;105:991-1000.
  • Rönn, Tina, et al. (författare)
  • Impact of age, BMI and HbA1c levels on the genome-wide DNA methylation and mRNA expression patterns in human adipose tissue and identification of epigenetic biomarkers in blood.
  • 2015
  • Ingår i: Human Molecular Genetics. - : Oxford University Press. - 0964-6906 .- 1460-2083. ; 24:13, s. 3792-3813
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased age, BMI and HbA1c levels are risk factors for several non-communicable diseases. However, the impact of these factors on the genome-wide DNA methylation pattern in human adipose tissue remains unknown. We analyzed DNA methylation of ∼480,000 sites in human adipose tissue from 96 males and 94 females, and related methylation to age, BMI and HbA1c. We also compared epigenetic signatures in adipose tissue and blood. Age was significantly associated with both altered DNA methylation and expression of 1,050 genes (e.g. FHL2, NOX4 and PLG). Interestingly, many reported epigenetic biomarkers of ageing in blood, including ELOVL2, FHL2, KLF14 and GLRA1, also showed significant correlations between adipose tissue DNA methylation and age in our study. The most significant association between age and adipose tissue DNA methylation was found upstream of ELOVL2. We identified 2,825 genes (e.g. FTO, ITIH5, CCL18, MTCH2, IRS1 and SPP1) where both DNA methylation and expression correlated with BMI. Methylation at previously reported HIF3A sites correlated significantly with BMI in females only. HbA1c (range 28-46 mmol/mol) correlated significantly with methylation of 711 sites, annotated to e.g. RAB37, TICAM1 and HLA-DPB1. Pathway analyses demonstrated that methylation levels associated with age and BMI are overrepresented among genes involved in cancer, type 2 diabetes and cardiovascular disease. Our results highlight the impact of age, BMI and HbA1c on epigenetic variation of candidate genes for metabolic diseases and cancer in human adipose tissue. Importantly, we demonstrate that epigenetic biomarkers in blood can mirror age-related epigenetic signatures in target tissues for metabolic diseases such as adipose tissue.
  • Volkov, P., et al. (författare)
  • A Genome-Wide mQTL Analysis in Human Adipose Tissue Identifies Genetic Variants Associated with DNA Methylation, Gene Expression and Metabolic Traits
  • 2016
  • Ingår i: Plos One. - : Public Library of Science. - 1932-6203. ; 11:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Little is known about the extent to which interactions between genetics and epigenetics may affect the risk of complex metabolic diseases and/or their intermediary phenotypes. We performed a genome-wide DNA methylation quantitative trait locus (mQTL) analysis in human adipose tissue of 119 men, where 592,794 single nucleotide polymorphisms (SNPs) were related to DNA methylation of 477,891 CpG sites, covering 99% of RefSeq genes. SNPs in significant mQTLs were further related to gene expression in adipose tissue and obesity related traits. We found 101,911 SNP-CpG pairs (mQTLs) in cis and 5,342 SNP-CpG pairs in trans showing significant associations between genotype and DNA methylation in adipose tissue after correction for multiple testing, where cis is defined as distance less than 500 kb between a SNP and CpG site. These mQTLs include reported obesity, lipid and type 2 diabetes loci, e.g. ADCY3/POMC, APOA5, CETP, FADS2, GCKR, SORT1 and LEPR. Significant mQTLs were overrepresented in intergenic regions meanwhile underrepresented in promoter regions and CpG islands. We further identified 635 SNPs in significant cis-mQTLs associated with expression of 86 genes in adipose tissue including CHRNA5, G6PC2, GPX7, RPL27A, THNSL2 and ZFP57. SNPs in significant mQTLs were also associated with body mass index (BMI), lipid traits and glucose and insulin levels in our study cohort and public available consortia data. Importantly, the Causal Inference Test (CIT) demonstrates how genetic variants mediate their effects on metabolic traits (e.g. BMI, cholesterol, highdensity lipoprotein (HDL), hemoglobin A1c (HbA1c) and homeostatic model assessment of insulin resistance (HOMA-IR)) via altered DNA methylation in human adipose tissue. This study identifies genome-wide interactions between genetic and epigenetic variation in both cis and trans positions influencing gene expression in adipose tissue and in vivo (dys) metabolic traits associated with the development of obesity and diabetes.
  • Bacos, Karl, et al. (författare)
  • Blood-based biomarkers of age-associated epigenetic changes in human islets associate with insulin secretion and diabetes
  • 2016
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Aging associates with impaired pancreatic islet function and increased type 2 diabetes (T2D) risk. Here we examine whether age-related epigenetic changes affect human islet function and if blood-based epigenetic biomarkers reflect these changes and associate with future T2D. We analyse DNA methylation genome-wide in islets from 87 non-diabetic donors, aged 26-74 years. Aging associates with increased DNA methylation of 241 sites. These sites cover loci previously associated with T2D, for example, KLF14. Blood-based epigenetic biomarkers reflect age-related methylation changes in 83 genes identified in human islets (for example, KLF14, FHL2, ZNF518B and FAM123C) and some associate with insulin secretion and T2D. DNA methylation correlates with islet expression of multiple genes, including FHL2, ZNF518B, GNPNAT1 and HLTF. Silencing these genes in β-cells alter insulin secretion. Together, we demonstrate that blood-based epigenetic biomarkers reflect age-related DNA methylation changes in human islets, and associate with insulin secretion in vivo and T2D.
  • Broholm, Christa, et al. (författare)
  • Epigenome- and Transcriptome-wide Changes in Muscle Stem Cells from Low Birth Weight Men
  • 2020
  • Ingår i: Endocrine Research. - : Taylor & Francis. - 0743-5800. ; 45:1, s. 58-71
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Being born with low birth weight (LBW) is a risk factor for muscle insulin resistance and type 2 diabetes (T2D), which may be mediated by epigenetic mechanisms programmed by the intrauterine environment. Epigenetic mechanisms exert their prime effects in developing cells. We hypothesized that muscle insulin resistance in LBW subjects may be due to early differential epigenomic and transcriptomic alterations in their immature muscle progenitor cells. Results: Muscle progenitor cells were obtained from 23 healthy young adult men born at term with LBW, and 15 BMI-matched normal birth weight (NBW) controls. The cells were subsequently cultured and differentiated into myotubes. DNA and RNA were harvested before and after differentiation for genome-wide DNA methylation and RNA expression measurements. After correcting for multiple comparisons (q ≤ 0.05), 56 CpG sites were found to be significantly, differentially methylated in myoblasts from LBW compared with NBW men, of which the top five gene-annotated CpG sites (SKI, ARMCX3, NR5A2, NEUROG, ESRRG) previously have been associated to regulation of cholesterol, fatty acid and glucose metabolism and muscle development or hypertrophy. LBW men displayed markedly decreased myotube gene expression levels of the AMPK-repressing tyrosine kinase gene FYN and the histone deacetylase gene HDAC7. Silencing of FYN and HDAC7 was associated with impaired myotube formation, which for HDAC7 reduced muscle glucose uptake. Conclusions: The data provides evidence of impaired muscle development predisposing LBW individuals to T2D is linked to and potentially caused by distinct DNA methylation and transcriptional changes including down regulation of HDAC7 and FYN in their immature myoblast stem cells.
  • Bysani, Madhusudhan, et al. (författare)
  • ATAC-seq reveals alterations in open chromatin in pancreatic islets from subjects with type 2 diabetes
  • 2019
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Impaired insulin secretion from pancreatic islets is a hallmark of type 2 diabetes (T2D). Altered chromatin structure may contribute to the disease. We therefore studied the impact of T2D on open chromatin in human pancreatic islets. We used assay for transposase-accessible chromatin using sequencing (ATAC-seq) to profile open chromatin in islets from T2D and non-diabetic donors. We identified 57,105 and 53,284 ATAC-seq peaks representing open chromatin regions in islets of nondiabetic and diabetic donors, respectively. The majority of ATAC-seq peaks mapped near transcription start sites. Additionally, peaks were enriched in enhancer regions and in regions where islet-specific transcription factors (TFs), e.g. FOXA2, MAFB, NKX2.2, NKX6.1 and PDX1, bind. Islet ATAC-seq peaks overlap with 13 SNPs associated with T2D (e.g. rs7903146, rs2237897, rs757209, rs11708067 and rs878521 near TCF7L2, KCNQ1, HNF1B, ADCY5 and GCK, respectively) and with additional 67 SNPs in LD with known T2D SNPs (e.g. SNPs annotated to GIPR, KCNJ11, GLIS3, IGF2BP2, FTO and PPARG). There was enrichment of open chromatin regions near highly expressed genes in human islets. Moreover, 1,078 open chromatin peaks, annotated to 898 genes, differed in prevalence between diabetic and non-diabetic islet donors. Some of these peaks are annotated to candidate genes for T2D and islet dysfunction (e.g. HHEX, HMGA2, GLIS3, MTNR1B and PARK2) and some overlap with SNPs associated with T2D (e.g. rs3821943 near WFS1 and rs508419 near ANK1). Enhancer regions and motifs specific to key TFs including BACH2, FOXO1, FOXA2, NEUROD1, MAFA and PDX1 were enriched in differential islet ATAC-seq peaks of T2D versus non-diabetic donors. Our study provides new understanding into how T2D alters the chromatin landscape, and thereby accessibility for TFs and gene expression, in human pancreatic islets.
  • Davegårdh, Cajsa, et al. (författare)
  • Abnormal epigenetic changes during differentiation of human skeletal muscle stem cells from obese subjects
  • Ingår i: BMC Medicine. - : BioMed Central (BMC). - 1741-7015. ; 15:1, s. 1-27
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Human skeletal muscle stem cells are important for muscle regeneration. However, the combined genome-wide DNA methylation and expression changes taking place during adult myogenesis have not been described in detail and novel myogenic factors may be discovered. Additionally, obesity is associated with low relative muscle mass and diminished metabolism. Epigenetic alterations taking place during myogenesis might contribute to these defects. Methods: We used Infinium HumanMethylation450 BeadChip Kit (Illumina) and HumanHT-12 Expression BeadChip (Illumina) to analyze genome-wide DNA methylation and transcription before versus after differentiation of primary human myoblasts from 14 non-obese and 14 obese individuals. Functional follow-up experiments were performed using siRNA mediated gene silencing in primary human myoblasts and a transgenic mouse model. Results: We observed genome-wide changes in DNA methylation and expression patterns during differentiation of primary human muscle stem cells (myoblasts). We identified epigenetic and transcriptional changes of myogenic transcription factors (MYOD1, MYOG, MYF5, MYF6, PAX7, MEF2A, MEF2C, and MEF2D), cell cycle regulators, metabolic enzymes and genes previously not linked to myogenesis, including IL32, metallothioneins, and pregnancy-specific beta-1-glycoproteins. Functional studies demonstrated IL-32 as a novel target that regulates human myogenesis, insulin sensitivity and ATP levels in muscle cells. Furthermore, IL32 transgenic mice had reduced insulin response and muscle weight. Remarkably, approximately 3.7 times more methylation changes (147,161 versus 39,572) were observed during differentiation of myoblasts from obese versus non-obese subjects. In accordance, DNMT1 expression increased during myogenesis only in obese subjects. Interestingly, numerous genes implicated in metabolic diseases and epigenetic regulation showed differential methylation and expression during differentiation only in obese subjects. Conclusions: Our study identifies IL-32 as a novel myogenic regulator, provides a comprehensive map of the dynamic epigenome during differentiation of human muscle stem cells and reveals abnormal epigenetic changes in obesity.
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 29
  • [1]23Nästa
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy