SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Volkov Petr) ;pers:(Nitulescu Mihaela)"

Sökning: WFRF:(Volkov Petr) > Nitulescu Mihaela

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Edsfeldt, Andreas, et al. (författare)
  • Interferon regulatory factor-5-dependent CD11c+ macrophages contribute to the formation of rupture-prone atherosclerotic plaques
  • 2022
  • Ingår i: European Heart Journal. - : Oxford University Press (OUP). - 1522-9645 .- 0195-668X. ; 43:19, s. 1864-1877
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS: Inflammation is a key factor in atherosclerosis. The transcription factor interferon regulatory factor-5 (IRF5) drives macrophages towards a pro-inflammatory state. We investigated the role of IRF5 in human atherosclerosis and plaque stability.METHODS AND RESULTS: Bulk RNA sequencing from the Carotid Plaque Imaging Project biobank were used to mine associations between major macrophage associated genes and transcription factors and human symptomatic carotid disease. Immunohistochemistry, proximity extension assays, and Helios cytometry by time of flight (CyTOF) were used for validation. The effect of IRF5 deficiency on carotid plaque phenotype and rupture in ApoE-/- mice was studied in an inducible model of plaque rupture. Interferon regulatory factor-5 and ITGAX/CD11c were identified as the macrophage associated genes with the strongest associations with symptomatic carotid disease. Expression of IRF5 and ITGAX/CD11c correlated with the vulnerability index, pro-inflammatory plaque cytokine levels, necrotic core area, and with each other. Macrophages were the predominant CD11c-expressing immune cells in the plaque by CyTOF and immunohistochemistry. Interferon regulatory factor-5 immunopositive areas were predominantly found within CD11c+ areas with a predilection for the shoulder region, the area of the human plaque most prone to rupture. Accordingly, an inducible plaque rupture model of ApoE-/-Irf5-/- mice had significantly lower frequencies of carotid plaque ruptures, smaller necrotic cores, and less CD11c+ macrophages than their IRF5-competent counterparts.CONCLUSION: Using complementary evidence from data from human carotid endarterectomies and a murine model of inducible rupture of carotid artery plaque in IRF5-deficient mice, we demonstrate a mechanistic link between the pro-inflammatory transcription factor IRF5, macrophage phenotype, plaque inflammation, and its vulnerability to rupture.KEY QUESTION: The transcription factor interferon regulatory factor-5 (IRF5) is a master regulator of macrophage activation that has been shown to have a role in murine atherogenesis. Its role in human atherosclerosis and its complications is unknown.KEY FINDING: Interferon regulatory factor-5 is linked to plaque vulnerability and symptoms in human carotid endarterectomies. In a murine model of inducible carotid artery plaque rupture, IRF5 drives plaque rupture. Interferon regulatory factor-5 modulates macrophage phenotype and it colocalises with CD11c+ macrophages at the plaque shoulder.TAKE-HOME MESSAGE: We demonstrate a mechanistic link between the IRF5, plaque macrophages, and plaque vulnerability to rupture. Interferon regulatory factor-5 is a potential candidate therapeutic target in human atherosclerosis.
  •  
2.
  •  
3.
  • Singh, Pratibha, et al. (författare)
  • Reduced oxidized LDL in T2D plaques is associated with a greater statin usage but not with future cardiovascular events
  • 2020
  • Ingår i: Cardiovascular Diabetology. - : Springer Science and Business Media LLC. - 1475-2840. ; 19:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Type 2 diabetes (T2D) patients are at a greater risk of cardiovascular events due to aggravated atherosclerosis. Oxidized LDL (oxLDL) has been shown to be increased in T2D plaques and suggested to contribute to plaque ruptures. Despite intensified statin treatment during the last decade the higher risk for events remains. Here, we explored if intensified statin treatment was associated with reduced oxLDL in T2D plaques and if oxLDL predicts cardiovascular events, to elucidate whether further plaque oxLDL reduction would be a promising therapeutic target. METHODS: Carotid plaque OxLDL levels and plasma lipoproteins were assessed in 200 patients. Plaque oxLDL was located by immunohistochemistry. Plaque cytokines, cells and scavenger receptor gene expression were quantified by Luminex, immunohistochemistry and RNA sequencing, respectively. Clinical information and events during follow-up were obtained from national registers. RESULTS: Plaque oxLDL levels correlated with markers of inflammatory activity, endothelial activation and plasma LDL cholesterol (r = 0.22-0.32 and p ≤ 0.01 for all). T2D individuals exhibited lower plaque levels of oxLDL, sLOX-1(a marker of endothelial activation) and plasma LDL cholesterol (p = 0.001, p = 0.006 and p = 0.009). No increased gene expression of scavenger receptors was identified in T2D plaques. The lower oxLDL content in T2D plaques was associated with a greater statin usage (p = 0.026). Supporting this, a linear regression model showed that statin treatment was the factor with the strongest association to plaque oxLDL and plasma LDL cholesterol (p < 0.001 for both). However, patients with T2D more frequently suffered from symptoms and yet plaque levels of oxLDL did not predict cardiovascular events in T2D (findings are summarized in Fig. 1a). CONCLUSIONS: This study points out the importance of statin treatment in affecting plaque biology in T2D. It also implies that other biological components, beyond oxLDL, need to be identified and targeted to further reduce the risk of events among T2D patients receiving statin treatment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy