SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vreeker Annabel) "

Sökning: WFRF:(Vreeker Annabel)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • McWhinney, Sean R, et al. (författare)
  • Association between body mass index and subcortical brain volumes in bipolar disorders-ENIGMA study in 2735 individuals.
  • 2021
  • Ingår i: Molecular psychiatry. - : Springer Science and Business Media LLC. - 1476-5578 .- 1359-4184. ; 26:11, s. 6806-6819
  • Tidskriftsartikel (refereegranskat)abstract
    • Individuals with bipolar disorders (BD) frequently suffer from obesity, which is often associated with neurostructural alterations. Yet, the effects of obesity on brain structure in BD are under-researched. We obtained MRI-derived brain subcortical volumes and body mass index (BMI) from 1134 BD and 1601 control individuals from 17 independent research sites within the ENIGMA-BD Working Group. We jointly modeled the effects of BD and BMI on subcortical volumes using mixed-effects modeling and tested for mediation of group differences by obesity using nonparametric bootstrapping. All models controlled for age, sex, hemisphere, total intracranial volume, and data collection site. Relative to controls, individuals with BD had significantly higher BMI, larger lateral ventricular volume, and smaller volumes of amygdala, hippocampus, pallidum, caudate, and thalamus. BMI was positively associated with ventricular and amygdala and negatively with pallidal volumes. When analyzed jointly, both BD and BMI remained associated with volumes of lateral ventricles  and amygdala. Adjusting for BMI decreased the BD vs control differences in ventricular volume. Specifically, 18.41% of the association between BD and ventricular volume was mediated by BMI (Z = 2.73, p = 0.006). BMI was associated with similar regional brain volumes as BD, including lateral ventricles, amygdala, and pallidum. Higher BMI may in part account for larger ventricles, one of the most replicated findings in BD. Comorbidity with obesity could explain why neurostructural alterations are more pronounced in some individuals with BD. Future prospective brain imaging studies should investigate whether obesity could be a modifiable risk factor for neuroprogression.
  •  
2.
  • McWhinney, Sean R, et al. (författare)
  • Diagnosis of bipolar disorders and body mass index predict clustering based on similarities in cortical thickness-ENIGMA study in 2436 individuals.
  • 2022
  • Ingår i: Bipolar disorders. - : Wiley. - 1399-5618 .- 1398-5647. ; 24:5, s. 509-520
  • Tidskriftsartikel (refereegranskat)abstract
    • Rates of obesity have reached epidemic proportions, especially among people with psychiatric disorders. While the effects of obesity on the brain are of major interest in medicine, they remain markedly under-researched in psychiatry.We obtained body mass index (BMI) and magnetic resonance imaging-derived regional cortical thickness, surface area from 836 bipolar disorders (BD) and 1600 control individuals from 14 sites within the ENIGMA-BD Working Group. We identified regionally specific profiles of cortical thickness using K-means clustering and studied clinical characteristics associated with individual cortical profiles.We detected two clusters based on similarities among participants in cortical thickness. The lower thickness cluster (46.8% of the sample) showed thinner cortex, especially in the frontal and temporal lobes and was associated with diagnosis of BD, higher BMI, and older age. BD individuals in the low thickness cluster were more likely to have the diagnosis of bipolar disorder I and less likely to be treated with lithium. In contrast, clustering based on similarities in the cortical surface area was unrelated to BD or BMI and only tracked age and sex.We provide evidence that both BD and obesity are associated with similar alterations in cortical thickness, but not surface area. The fact that obesity increased the chance of having low cortical thickness could explain differences in cortical measures among people with BD. The thinner cortex in individuals with higher BMI, which was additive and similar to the BD-associated alterations, may suggest that treating obesity could lower the extent of cortical thinning in BD.
  •  
3.
  • McWhinney, Sean R, et al. (författare)
  • Mega-analysis of association between obesity and cortical morphology in bipolar disorders: ENIGMA study in 2832 participants.
  • 2023
  • Ingår i: Psychological medicine. - 1469-8978. ; , s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity is highly prevalent and disabling, especially in individuals with severe mental illness including bipolar disorders (BD). The brain is a target organ for both obesity and BD. Yet, we do not understand how cortical brain alterations in BD and obesity interact.We obtained body mass index (BMI) and MRI-derived regional cortical thickness, surface area from 1231 BD and 1601 control individuals from 13 countries within the ENIGMA-BD Working Group. We jointly modeled the statistical effects of BD and BMI on brain structure using mixed effects and tested for interaction and mediation. We also investigated the impact of medications on the BMI-related associations.BMI and BD additively impacted the structure of many of the same brain regions. Both BMI and BD were negatively associated with cortical thickness, but not surface area. In most regions the number of jointly used psychiatric medication classes remained associated with lower cortical thickness when controlling for BMI. In a single region, fusiform gyrus, about a third of the negative association between number of jointly used psychiatric medications and cortical thickness was mediated by association between the number of medications and higher BMI.We confirmed consistent associations between higher BMI and lower cortical thickness, but not surface area, across the cerebral mantle, in regions which were also associated with BD. Higher BMI in people with BD indicated more pronounced brain alterations. BMI is important for understanding the neuroanatomical changes in BD and the effects of psychiatric medications on the brain.
  •  
4.
  • Mensen, Vincent T., et al. (författare)
  • Psychopathological symptoms associated with synthetic cannabinoid use : a comparison with natural cannabis
  • 2019
  • Ingår i: Psychopharmacology. - : Springer. - 0033-3158 .- 1432-2072. ; 236:9, s. 2677-2685
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Synthetic cannabinoids (SCs) are a class of new psychoactive substances that have been rapidly evolving around the world throughout recent years. Many different synthetic cannabinoid analogues are on the consumer market and sold under misleading names, like Bspice^ or Bincense.^ A limited number of studies have reported serious health effects associated with SC use. In this study, we compared clinical and subclinical psychopathological symptoms associated with SC use and natural cannabis (NC) use. Methods: A convenience sample of 367 NC and SC users was recruited online, including four validated psychometric questionnaires: The Drug Use Disorders Identification Test (DUDIT), Insomnia Severity Index (ISI), Altman Mania Scale (Altman), and Brief Symptom Inventory (BSI). The two groups were compared with analysis of variance (ANOVA) and covariance (ANCOVA), chi2 tests, and logistic regression when appropriate. Results: The SC user group did not differ in age from the NC user group (27.7 years), but contained less females (21% and 30%, respectively). SC users scored higher than NC users on all used psychometric measures, indicating a higher likelihood of drug abuse, sleep problems, (hypo)manic symptoms, and the nine dimensions comprising the BSI, somatization, obsessivecompulsive behavior, interpersonal sensitivity, depression, anxiety, hostility, phobic anxiety, paranoid ideation, and psychoticism. Odds ratios (95% CI) for the SC user group vs NC user group were, respectively, drug dependence 3.56 (1.77–7.16), (severe) insomnia 5.01 (2.10–11.92), (hypo-)mania 5.18 (2.04–13.14), and BSI psychopathology 5.21 (2.96–9.17). Discussion: This study shows that SC use is associated with increased mental health symptomatology compared to NC use.
  •  
5.
  • Palmer, Duncan S., et al. (författare)
  • Exome sequencing in bipolar disorder identifies AKAP11 as a risk gene shared with schizophrenia
  • 2022
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 54:5, s. 541-547
  • Tidskriftsartikel (refereegranskat)abstract
    • We report results from the Bipolar Exome (BipEx) collaboration analysis of whole-exome sequencing of 13,933 patients with bipolar disorder (BD) matched with 14,422 controls. We find an excess of ultra-rare protein-truncating variants (PTVs) in patients with BD among genes under strong evolutionary constraint in both major BD subtypes. We find enrichment of ultra-rare PTVs within genes implicated from a recent schizophrenia exome meta-analysis (SCHEMA; 24,248 cases and 97,322 controls) and among binding targets of CHD8. Genes implicated from genome-wide association studies (GWASs) of BD, however, are not significantly enriched for ultra-rare PTVs. Combining gene-level results with SCHEMA, AKAP11 emerges as a definitive risk gene (odds ratio (OR) = 7.06, P = 2.83 × 10−9). At the protein level, AKAP-11 interacts with GSK3B, the hypothesized target of lithium, a primary treatment for BD. Our results lend support to BD’s polygenicity, demonstrating a role for rare coding variation as a significant risk factor in BD etiology.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy