SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vreeman R) "

Sökning: WFRF:(Vreeman R)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Campbell, Walter S., et al. (författare)
  • A computable pathology report for precision medicine: extending an observables ontology unifying SNOMED CT and LOINC
  • 2018
  • Ingår i: JAMIA Journal of the American Medical Informatics Association. - : OXFORD UNIV PRESS. - 1067-5027 .- 1527-974X. ; 25:3, s. 259-266
  • Tidskriftsartikel (refereegranskat)abstract
    • The College of American Pathologists (CAP) introduced the first cancer synoptic reporting protocols in 1998. However, the objective of a fully computable and machine-readable cancer synoptic report remains elusive due to insufficient definitional content in Systematized Nomenclature of Medicine - Clinical Terms (SNOMED CT) and Logical Observation Identifiers Names and Codes (LOINC). To address this terminology gap, investigators at the University of Nebraska Medical Center (UNMC) are developing, authoring, and testing a SNOMED CT observable ontology to represent the data elements identified by the synoptic worksheets of CAP. Investigators along with collaborators from the US National Library of Medicine, CAP, the International Health Terminology Standards Development Organization, and the UK Health and Social Care Information Centre analyzed and assessed required data elements for colorectal cancer and invasive breast cancer synoptic reporting. SNOMED CT concept expressions were developed at UNMC in the Nebraska LexiconA (c) SNOMED CT namespace. LOINC codes for each SNOMED CT expression were issued by the Regenstrief Institute. SNOMED CT concepts represented observation answer value sets. UNMC investigators created a total of 194 SNOMED CT observable entity concept definitions to represent required data elements for CAP colorectal and breast cancer synoptic worksheets, including biomarkers. Concepts were bound to colorectal and invasive breast cancer reports in the UNMC pathology system and successfully used to populate a UNMC biobank. The absence of a robust observables ontology represents a barrier to data capture and reuse in clinical areas founded upon observational information. Terminology developed in this project establishes the model to characterize pathology data for information exchange, public health, and research analytics.
  •  
8.
  • Lima, Bruno P, et al. (författare)
  • Streptococcus gordonii type I lipoteichoic acid contributes to surface protein biogenesis
  • 2019
  • Ingår i: mSphere. - : American Society for Microbiology. - 2379-5042. ; 4:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Lipoteichoic acid (LTA) is an abundant polymer of the Gram-positive bacterial cell envelope and is essential for many species. Whereas the exact function of LTA has not been elucidated, loss of LTA in some species affects hydrophobicity, biofilm formation, and cell division. Using a viable LTA-deficient strain of the human oral commensal Streptococcus gordonii, we demonstrated that LTA plays an important role in surface protein presentation. Cell wall fractions derived from the wild-type and LTA-deficient strains of S. gordonii were analyzed using label-free mass spectroscopy. Comparisons showed that the abundances of many proteins differed, including (i) SspA, SspB, and S. gordonii 0707 (SGO_0707) (biofilm formation); (ii) FtsE (cell division); (iii) Pbp1a and Pbp2a (cell wall biosynthesis and remodeling); and (iv) DegP (envelope stress response). These changes in cell surface protein presentation appear to explain our observations of altered cell envelope homeostasis, biofilm formation, and adhesion to eukaryotic cells, without affecting binding and coaggregation with other bacterial species, and provide insight into the phenotypes revealed by the loss of LTA in other species of Gram-positive bacteria. We also characterized the chemical structure of the LTA expressed by S. gordonii Similarly to Streptococcus suis, S. gordonii produced a complex type I LTA, decorated with multiple d-alanylations and glycosylations. Hence, the S. gordonii LTA appears to orchestrate expression and presentation of cell surface-associated proteins and functions.IMPORTANCE Discovered over a half-century ago, lipoteichoic acid (LTA) is an abundant polymer found on the surface of Gram-positive bacteria. Although LTA is essential for the survival of many Gram-positive species, knowledge of how LTA contributes to bacterial physiology has remained elusive. Recently, LTA-deficient strains have been generated in some Gram-positive species, including the human oral commensal Streptococcus gordonii The significance of our research is that we utilized an LTA-deficient strain of S. gordonii to address why LTA is physiologically important to Gram-positive bacteria. We demonstrate that in S. gordonii, LTA plays an important role in the presentation of many cell surface-associated proteins, contributing to cell envelope homeostasis, cell-to-cell interactions in biofilms, and adhesion to eukaryotic cells. These data may broadly reflect a physiological role of LTA in Gram-positive bacteria.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy