SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Wahl Simone) "

Search: WFRF:(Wahl Simone)

  • Result 1-10 of 12
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Schael, S, et al. (author)
  • Precision electroweak measurements on the Z resonance
  • 2006
  • In: Physics Reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 427:5-6, s. 257-454
  • Research review (peer-reviewed)abstract
    • We report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron-positron colliders SLC and LEP. The data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLID experiment using a polarised beam at SLC. The measurements include cross-sections, forward-backward asymmetries and polarised asymmetries. The mass and width of the Z boson, m(Z) and Gamma(Z), and its couplings to fermions, for example the p parameter and the effective electroweak mixing angle for leptons, are precisely measured: m(Z) = 91.1875 +/- 0.0021 GeV, Gamma(Z) = 2.4952 +/- 0.0023 GeV, rho(l) = 1.0050 +/- 0.0010, sin(2)theta(eff)(lept) = 0.23153 +/- 0.00016. The number of light neutrino species is determined to be 2.9840 +/- 0.0082, in agreement with the three observed generations of fundamental fermions. The results are compared to the predictions of the Standard Model (SM). At the Z-pole, electroweak radiative corrections beyond the running of the QED and QCD coupling constants are observed with a significance of five standard deviations, and in agreement with the Standard Model. Of the many Z-pole measurements, the forward-backward asymmetry in b-quark production shows the largest difference with respect to its SM expectation, at the level of 2.8 standard deviations. Through radiative corrections evaluated in the framework of the Standard Model, the Z-pole data are also used to predict the mass of the top quark, m(t) = 173(+10)(+13) GeV, and the mass of the W boson, m(W) = 80.363 +/- 0.032 GeV. These indirect constraints are compared to the direct measurements, providing a stringent test of the SM. Using in addition the direct measurements of m(t) and m(W), the mass of the as yet unobserved SM Higgs boson is predicted with a relative uncertainty of about 50% and found to be less than 285 GeV at 95% confidence level. (c) 2006 Elsevier B.V. All rights reserved.
  •  
2.
  • Blennow, Kaj, 1958, et al. (author)
  • Predicting clinical decline and conversion to Alzheimer's disease or dementia using novel Elecsys Aβ(1-42), pTau and tTau CSF immunoassays.
  • 2019
  • In: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9:1
  • Journal article (peer-reviewed)abstract
    • We evaluated the performance of CSF biomarkers for predicting risk of clinical decline and conversion to dementia in non-demented patients with cognitive symptoms. CSF samples from patients in two multicentre longitudinal studies (ADNI, n = 619; BioFINDER, n = 431) were analysed. Aβ(1-42), tTau and pTau CSF concentrations were measured using Elecsys CSF immunoassays, and tTau/Aβ(1-42) and pTau/Aβ(1-42) ratios calculated. Patients were classified as biomarker (BM)-positive or BM-negative at baseline. Ability of biomarkers to predict risk of clinical decline and conversion to AD/dementia was assessed using pre-established cut-offs for Aβ(1-42) and ratios; tTau and pTau cut-offs were determined. BM-positive patients showed greater clinical decline than BM-negative patients, demonstrated by greater decreases in MMSE scores (all biomarkers: -2.10 to -0.70). Risk of conversion to AD/dementia was higher in BM-positive patients (HR: 1.67 to 11.48). Performance of Tau/Aβ(1-42) ratios was superior to single biomarkers, and consistent even when using cut-offs derived in a different cohort. Optimal pTau and tTau cut-offs were approximately 27 pg/mL and 300 pg/mL in both BioFINDER and ADNI. Elecsys pTau/Aβ(1-42) and tTau/Aβ(1-42) are robust biomarkers for predicting risk of clinical decline and conversion to dementia in non-demented patients, and may support AD diagnosis in clinical practice.
  •  
3.
  • Claussnitzer, Melina, et al. (author)
  • Leveraging cross-species transcription factor binding site patterns: from diabetes risk Loci to disease mechanisms.
  • 2014
  • In: Cell. - : Elsevier BV. - 1097-4172 .- 0092-8674. ; 156:1-2, s. 343-358
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies have revealed numerous risk loci associated with diverse diseases. However, identification of disease-causing variants within association loci remains a major challenge. Divergence in gene expression due to cis-regulatory variants in noncoding regions is central to disease susceptibility. We show that integrative computational analysis of phylogenetic conservation with a complexity assessment of co-occurring transcription factor binding sites (TFBS) can identify cis-regulatory variants and elucidate their mechanistic role in disease. Analysis of established type 2 diabetes risk loci revealed a striking clustering of distinct homeobox TFBS. We identified the PRRX1 homeobox factor as a repressor of PPARG2 expression in adipose cells and demonstrate its adverse effect on lipid metabolism and systemic insulin sensitivity, dependent on the rs4684847 risk allele that triggers PRRX1 binding. Thus, cross-species conservation analysis at the level of co-occurring TFBS provides a valuable contribution to the translation of genetic association signals to disease-related molecular mechanisms.
  •  
4.
  • Dick, Katherine J., et al. (author)
  • DNA methylation and body-mass index : a genome-wide analysis
  • 2014
  • In: The Lancet. - 0140-6736 .- 1474-547X. ; 383:9933, s. 1990-1998
  • Journal article (peer-reviewed)abstract
    • Background Obesity is a major health problem that is determined by interactions between lifestyle and environmental and genetic factors. Although associations between several genetic variants and body-mass index (BMI) have been identified, little is known about epigenetic changes related to BMI. We undertook a genome-wide analysis of methylation at CpG sites in relation to BMI. Methods 479 individuals of European origin recruited by the Cardiogenics Consortium formed our discovery cohort. We typed their whole-blood DNA with the Infinium HumanMethylation450 array. After quality control, methylation levels were tested for association with BMI. Methylation sites showing an association with BMI at a false discovery rate q value of 0.05 or less were taken forward for replication in a cohort of 339 unrelated white patients of northern European origin from the MARTHA cohort. Sites that remained significant in this primary replication cohort were tested in a second replication cohort of 1789 white patients of European origin from the KORA cohort. We examined whether methylation levels at identified sites also showed an association with BMI in DNA from adipose tissue (n=635) and skin (n=395) obtained from white female individuals participating in the MuTHER study. Finally, we examined the association of methylation at BMI-associated sites with genetic variants and with gene expression. Findings 20 individuals from the discovery cohort were excluded from analyses after quality-control checks, leaving 459 participants. After adjustment for covariates, we identified an association (q value <= 0.05) between methylation at five probes across three different genes and BMI. The associations with three of these probes-cg22891070, cg27146050, and cg16672562, all of which are in intron 1 of HIF3A-were confirmed in both the primary and second replication cohorts. For every 0.1 increase in methylation beta value at cg22891070, BMI was 3.6% (95% CI 2.4-4.9) higher in the discovery cohort, 2.7% (1.2-4.2) higher in the primary replication cohort, and 0.8% (0.2-1.4) higher in the second replication cohort. For the MuTHER cohort, methylation at cg22891070 was associated with BMI in adipose tissue (p=1.72 x 10(-5)) but not in skin (p=0.882). We observed a significant inverse correlation (p=0.005) between methylation at cg22891070 and expression of one HIF3A gene-expression probe in adipose tissue. Two single nucleotide polymorphisms-rs8102595 and rs3826795-had independent associations with methylation at cg22891070 in all cohorts. However, these single nucleotide polymorphisms were not significantly associated with BMI. Interpretation Increased BMI in adults of European origin is associated with increased methylation at the HIF3A locus in blood cells and in adipose tissue. Our findings suggest that perturbation of hypoxia inducible transcription factor pathways could have an important role in the response to increased weight in people.
  •  
5.
  • Gaulton, Kyle J, et al. (author)
  • Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci.
  • 2015
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 47:12, s. 1415-1415
  • Journal article (peer-reviewed)abstract
    • We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease.
  •  
6.
  • Hansson, Oskar, et al. (author)
  • Pre-analytical protocol for measuring Alzheimer's disease biomarkers in fresh CSF
  • 2020
  • In: Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring. - : Wiley. - 2352-8729. ; 12:1
  • Journal article (peer-reviewed)abstract
    • Introduction: We aimed to establish a standardized, routine-use pre-analytical protocol for measuring Alzheimer's disease (AD) biomarkers in cerebrospinal fluid (CSF). Methods: The effect of pre-analytical factors (sample collection/handling/storage/transportation) on biomarker levels was assessed using freshly collected CSF. Tube type/sterilization was assessed using previously frozen samples. A low-bind false-bottom tube (FBT, Sarstedt) was used for all experiments, except tube types/sterilization experiments. Biomarkers were measured using Elecsys CSF assays. Results: Amyloid beta (Aβ)1-42 levels varied by tube type, using a low-bind FBT reduced variation. Aβ1-42 levels were higher with no mixing versus roller/inversion mixing. Aβ1-42 levels were lower with horizontal versus upright transportation; this was resolved by maximal tube filling and storage at 2°C to 8°C. Aβ1-40 levels were less strongly affected. Phospho-tau and total-tau levels were largely unaffected. Discussion: We propose an easy-to-use, standardized, routine-use pre-analytical protocol, using low-bind FBTs, for measuring AD CSF biomarkers in clinical practice.
  •  
7.
  • Hansson, Oskar, et al. (author)
  • The Alzheimer's Association international guidelines for handling of cerebrospinal fluid for routine clinical measurements of amyloid β and tau
  • 2021
  • In: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 17:9, s. 1575-1582
  • Journal article (peer-reviewed)abstract
    • The core cerebrospinal fluid (CSF) Alzheimer's disease (AD) biomarkers amyloid beta (Aβ42 and Aβ40), total tau, and phosphorylated tau, have been extensively clinically validated, with very high diagnostic performance for AD, including the early phases of the disease. However, between-center differences in pre-analytical procedures may contribute to variability in measurements across laboratories. To resolve this issue, a workgroup was led by the Alzheimer's Association with experts from both academia and industry. The aim of the group was to develop a simplified and standardized pre-analytical protocol for CSF collection and handling before analysis for routine clinical use, and ultimately to ensure high diagnostic performance and minimize patient misclassification rates. Widespread application of the protocol would help minimize variability in measurements, which would facilitate the implementation of unified cut-off levels across laboratories, and foster the use of CSF biomarkers in AD diagnostics for the benefit of the patients.
  •  
8.
  • Kato, Norihiro, et al. (author)
  • Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation
  • 2015
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 47:11, s. 1282-1293
  • Journal article (peer-reviewed)abstract
    • We carried out a trans-ancestry genome-wide association and replication study of blood pressure phenotypes among up to 320,251 individuals of East Asian, European and South Asian ancestry. We find genetic variants at 12 new loci to be associated with blood pressure (P = 3.9 × 10−11 to 5.0 × 10−21). The sentinel blood pressure SNPs are enriched for association with DNA methylation at multiple nearby CpG sites, suggesting that, at some of the loci identified, DNA methylation may lie on the regulatory pathway linking sequence variation to blood pressure. The sentinel SNPs at the 12 new loci point to genes involved in vascular smooth muscle (IGFBP3, KCNK3, PDE3A and PRDM6) and renal (ARHGAP24, OSR1, SLC22A7 and TBX2) function. The new and known genetic variants predict increased left ventricular mass, circulating levels of NT-proBNP, and cardiovascular and all-cause mortality (P = 0.04 to 8.6 × 10−6). Our results provide new evidence for the role of DNA methylation in blood pressure regulation.
  •  
9.
  • Knoepp, Fenja, et al. (author)
  • A Microfluidic System for Simultaneous Raman Spectroscopy, Patch-Clamp Electrophysiology, and Live-Cell Imaging to Study Key Cellular Events of Single Living Cells in Response to Acute Hypoxia
  • 2021
  • In: Small Methods. - : John Wiley & Sons. - 2366-9608. ; 5:10
  • Journal article (peer-reviewed)abstract
    • The ability to sense changes in oxygen availability is fundamentally important for the survival of all aerobic organisms. However, cellular oxygen sensing mechanisms and pathologies remain incompletely understood and studies of acute oxygen sensing, in particular, have produced inconsistent results. Current methods cannot simultaneously measure the key cellular events in acute hypoxia (i.e., changes in redox state, electrophysiological properties, and mechanical responses) at controlled partial pressures of oxygen (pO2). The lack of such a comprehensive method essentially contributes to the discrepancies in the field. A sealed microfluidic system that combines i) Raman spectroscopy, ii) patch-clamp electrophysiology, and iii) live-cell imaging under precisely controlled pO2 have therefore been developed. Merging these modalities allows label-free and simultaneous observation of oxygen-dependent alterations in multiple cellular redox couples, membrane potential, and cellular contraction. This technique is adaptable to any cell type and allows in-depth insight into acute oxygen sensing processes underlying various physiologic and pathologic conditions. 
  •  
10.
  • Pfeiffer, Liliane, et al. (author)
  • DNA methylation of lipid-related genes affects blood lipid levels.
  • 2015
  • In: Circulation. - 1942-325X .- 1942-3268. ; 8:2, s. 334-42
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Epigenetic mechanisms might be involved in the regulation of interindividual lipid level variability and thus may contribute to the cardiovascular risk profile. The aim of this study was to investigate the association between genome-wide DNA methylation and blood lipid levels high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, and total cholesterol. Observed DNA methylation changes were also further analyzed to examine their relationship with previous hospitalized myocardial infarction.METHODS AND RESULTS: Genome-wide DNA methylation patterns were determined in whole blood samples of 1776 subjects of the Cooperative Health Research in the Region of Augsburg F4 cohort using the Infinium HumanMethylation450 BeadChip (Illumina). Ten novel lipid-related CpG sites annotated to various genes including ABCG1, MIR33B/SREBF1, and TNIP1 were identified. CpG cg06500161, located in ABCG1, was associated in opposite directions with both high-density lipoprotein cholesterol (β coefficient=-0.049; P=8.26E-17) and triglyceride levels (β=0.070; P=1.21E-27). Eight associations were confirmed by replication in the Cooperative Health Research in the Region of Augsburg F3 study (n=499) and in the Invecchiare in Chianti, Aging in the Chianti Area study (n=472). Associations between triglyceride levels and SREBF1 and ABCG1 were also found in adipose tissue of the Multiple Tissue Human Expression Resource cohort (n=634). Expression analysis revealed an association between ABCG1 methylation and lipid levels that might be partly mediated by ABCG1 expression. DNA methylation of ABCG1 might also play a role in previous hospitalized myocardial infarction (odds ratio, 1.15; 95% confidence interval=1.06-1.25).CONCLUSIONS: Epigenetic modifications of the newly identified loci might regulate disturbed blood lipid levels and thus contribute to the development of complex lipid-related diseases.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 12
Type of publication
journal article (11)
research review (1)
Type of content
peer-reviewed (12)
Author/Editor
Gieger, Christian (5)
Peters, Annette (5)
Deloukas, Panos (4)
Waldenberger, Melani ... (4)
Illig, Thomas (4)
Hansson, Oskar (3)
show more...
McCarthy, Mark I (3)
Sandling, Johanna K. (3)
Groop, Leif (2)
Fadista, Joao (2)
Vineis, Paolo (2)
Blennow, Kaj (2)
Linneberg, Allan (2)
Grarup, Niels (2)
Pedersen, Oluf (2)
Hansen, Torben (2)
Stomrud, Erik (2)
Mohlke, Karen L (2)
Scott, Robert A (2)
Strauch, Konstantin (2)
Spector, Tim D. (2)
Samani, Nilesh J. (2)
Barroso, Ines (2)
Luan, Jian'an (2)
Ramser, Kerstin (2)
Metspalu, Andres (2)
Meitinger, Thomas (2)
van Duijn, Cornelia (2)
Blüher, Matthias (2)
Zetterberg, Henrik (2)
Wahl, Joel (2)
Thorand, Barbara (2)
Klopp, Norman (2)
Hofman, Albert (2)
Uitterlinden, André ... (2)
Wijmenga, Cisca (2)
Elliott, Paul (2)
Franco, Oscar H. (2)
van der Harst, Pim (2)
Meisinger, Christa (2)
Isaacs, Aaron (2)
Oskolkov, Nikolay (2)
Bonder, Marc Jan (2)
Soong, Richie (2)
Scott, James (2)
Milani, Lili (2)
Esko, Tõnu (2)
Dehghan, Abbas (2)
Tai, E. Shyong (2)
Müller-Nurasyid, Mar ... (2)
show less...
University
Lund University (7)
Uppsala University (4)
University of Gothenburg (3)
Umeå University (2)
Luleå University of Technology (2)
Karolinska Institutet (2)
show more...
Royal Institute of Technology (1)
Stockholm University (1)
show less...
Language
English (12)
Research subject (UKÄ/SCB)
Medical and Health Sciences (7)
Natural sciences (2)
Engineering and Technology (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view