SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wahlström Claes Göran) ;pers:(Neely D.)"

Sökning: WFRF:(Wahlström Claes Göran) > Neely D.

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aurand, Bastian, et al. (författare)
  • A setup for studies of laser-driven proton acceleration at the Lund Laser Centre
  • 2015
  • Ingår i: Laser and Particle Beams. - 0263-0346. ; 33:1, s. 59-64
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on a setup for the investigation of proton acceleration in the regime of target normal sheath acceleration. The main interest here is to focus on stable laser beam parameters as well as a reliable target setup and diagnostics in order to do extensive and systematic studies on the acceleration mechanism. A motorized target alignment system in combination with large target mounts allows for up to 340 shots with high repetition rate without breaking the vacuum. This performance is used to conduct experiments with a split mirror setup exploring the effect of spatial and temporal separation between the pulses on the acceleration mechanism and on the resulting proton beam.
  •  
2.
  • Brenner, C. M., et al. (författare)
  • Dependence of laser accelerated protons on laser energy following the interaction of defocused, intense laser pulses with ultra-thin targets
  • 2011
  • Ingår i: Laser and Particle Beams. - 0263-0346. ; 29:3, s. 345-351
  • Tidskriftsartikel (refereegranskat)abstract
    • The scaling of the flux and maximum energy of laser-driven sheath-accelerated protons has been investigated as a function of laser pulse energy in the range of 15-380 mJ at intensities of 10(16)-10(18) W/cm(2). The pulse duration and target thickness were fixed at 40 fs and 25 nm, respectively, while the laser focal spot size and drive energy were varied. Our results indicate that while the maximum proton energy is dependent on the laser energy and laser spot diameter, the proton flux is primarily related to the laser pulse energy under the conditions studied here. Our measurements show that increasing the laser energy by an order of magnitude results in a more than 500-fold increase in the observed proton flux. Whereas, an order of magnitude increase in the laser intensity generated by decreasing the laser focal spot size, at constant laser energy, gives rise to less than a tenfold increase in observed proton flux.
  •  
3.
  • Carroll, DC, et al. (författare)
  • Active manipulation of the spatial energy distribution of laser-accelerated proton beams
  • 2007
  • Ingår i: Physical Review E (Statistical, Nonlinear, and Soft Matter Physics). - 1539-3755. ; 76:065401(R), s. 1-065401
  • Tidskriftsartikel (refereegranskat)abstract
    • The spatial energy distributions of beams of protons accelerated by ultrahigh intensity (>10^19 W/cm2) picosecond laser pulse interactions with thin foil targets are investigated. Using separate, low intensity (<10^13 W/cm2) nanosecond laser pulses, focused onto the front surface of the target foil prior to the arrival of the high intensity pulse, it is demonstrated that the proton beam profile can be actively manipulated. In particular, results obtained with an annular intensity distribution at the focus of the low intensity beam are presented, showing smooth proton beams with a sharp circular boundary at all energies, which represents a significant improvement in the beam quality compared to irradiation with the picosecond beam alone.
  •  
4.
  • Carroll, D. C., et al. (författare)
  • A modified Thomson parabola spectrometer for high resolution multi-MeV ion measurements-Application to laser-driven ion acceleration
  • 2010
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. - : Elsevier BV. - 0168-9002. ; 620:1, s. 23-27
  • Konferensbidrag (refereegranskat)abstract
    • A novel Thomson parabola ion spectrometer design is presented, in which a gradient electric field configuration is employed to enable a compact design capable of high resolution measurements of ion energy and charge-to-mass ratio. Practical issues relating to the use of the spectrometer for measurement of ion acceleration in high-power laser-plasma experiments are discussed. Example experimental results for ion acceleration from petawatt-class laser interactions with thin gold target foils are presented. (C) 2010 Elsevier B.V. All rights reserved.
  •  
5.
  • Clarke, R. J., et al. (författare)
  • Detection of short lived radioisotopes as a fast diagnostic for intense laser-solid interactions
  • 2006
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 89:14
  • Tidskriftsartikel (refereegranskat)abstract
    • As a diagnostic of high-intensity laser interactions (> 10(19) W cm(-2)), the detection of radioactive isotopes is regularly used for the characterization of proton, neutron, ion, and photon beams. This involves sample removal from the interaction chamber and time consuming post shot analysis using NaI coincidence counting or Ge detectors. This letter describes the use of in situ detectors to measure laser-driven (p,n) reactions in Al-27 as an almost real-time diagnostic for proton acceleration. The produced Si-27 isotope decays with a 4.16 s half-life by the predominantly beta+ emission, producing a strong 511 keV annihilation peak. (c) 2006 American Institute of Physics.
  •  
6.
  • Coury, M., et al. (författare)
  • Influence of laser irradiated spot size on energetic electron injection and proton acceleration in foil targets
  • 2012
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 100:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The influence of irradiated spot size on laser energy coupling to electrons, and subsequently to protons, in the interaction of intense laser pulses with foil targets is investigated experimentally. Proton acceleration is characterized for laser intensities ranging from 2 x 10(18) - 6 x 10(20) W/cm(2), by (1) variation of the laser energy for a fixed irradiated spot size, and (2) by variation of the spot size for a fixed energy. At a given laser pulse intensity, the maximum proton energy is higher under defocus illumination compared to tight focus and the results are explained in terms of geometrical changes to the hot electron injection. (C) 2012 American Institute of Physics. [doi:10.1063/1.3685615]
  •  
7.
  • Coury, M., et al. (författare)
  • Injection and transport properties of fast electrons in ultraintense laser-solid interactions
  • 2013
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 20:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Fast electron injection and transport in solid foils irradiated by sub-picosecond-duration laser pulses with peak intensity equal to 4 x 10(20)W/cm(2) is investigated experimentally and via 3D simulations. The simulations are performed using a hybrid-particle-in-cell (PIC) code for a range of fast electron beam injection conditions, with and without inclusion of self-generated resistive magnetic fields. The resulting fast electron beam transport properties are used in rear-surface plasma expansion calculations to compare with measurements of proton acceleration, as a function of target thickness. An injection half-angle of similar to 50 degrees - 70 degrees is inferred, which is significantly larger than that derived from previous experiments under similar conditions. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4799726]
  •  
8.
  • Gray, R. J., et al. (författare)
  • Laser pulse propagation and enhanced energy coupling to fast electrons in dense plasma gradients
  • 2014
  • Ingår i: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 16
  • Tidskriftsartikel (refereegranskat)abstract
    • Laser energy absorption to fast electrons during the interaction of an ultra-intense (10(20) Wcm(-2)), picosecond laser pulse with a solid is investigated, experimentally and numerically, as a function of the plasma density scale length at the irradiated surface. It is shown that there is an optimum density gradient for efficient energy coupling to electrons and that this arises due to strong self-focusing and channeling driving energy absorption over an extended length in the preformed plasma. At longer density gradients the laser filaments, resulting in significantly lower overall energy coupling. As the scale length is further increased, a transition to a second laser energy absorption process is observed experimentally via multiple diagnostics. The results demonstrate that it is possible to significantly enhance laser energy absorption and coupling to fast electrons by dynamically controlling the plasma density gradient.
  •  
9.
  • Green, J. S., et al. (författare)
  • Enhanced proton flux in the MeV range by defocused laser irradiation
  • 2010
  • Ingår i: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Thin Al foils (50 nm and 6 mu m) were irradiated at intensities of up to 2x10(19) W cm(-2) using high contrast (10(8)) laser pulses. Ion emission from the rear of the targets was measured using a scintillator-based Thomson parabola and beam sampling 'footprint' monitor. The variation of the ion spectra and beam profile with focal spot size was systematically studied. The results show that while the maximum proton energy is achieved around tight focus for both target thicknesses, as the spot size increases the ion flux at lower energies is seen to peak at significantly increased spot sizes. Measurements of the proton footprint, however, show that the off-axis proton flux is highest at tight focus, indicating that a previously identified proton deflection mechanism may alter the on-axis spectrum. One-dimensional particle-in-cell modelling of the experiment supports our hypothesis that the observed change in spectra with focal spot size is due to the competition of two effects: decrease in laser intensity and an increase in proton emission area.
  •  
10.
  • MacLellan, D. A., et al. (författare)
  • Annular Fast Electron Transport in Silicon Arising from Low-Temperature Resistivity
  • 2013
  • Ingår i: Physical Review Letters. - 1079-7114. ; 111:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Fast electron transport in Si, driven by ultraintense laser pulses, is investigated experimentally and via 3D hybrid particle-in-cell simulations. A transition from a Gaussian-like to an annular fast electron beam profile is demonstrated and explained by resistively generated magnetic fields. The results highlight the potential to completely transform the beam transport pattern by tailoring the resistivity-temperature profile at temperatures as low as a few eV.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy