SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wahlström Claes Göran) ;pers:(Svensson Kristoffer)"

Sökning: WFRF:(Wahlström Claes Göran) > Svensson Kristoffer

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aurand, Bastian, et al. (författare)
  • A setup for studies of laser-driven proton acceleration at the Lund Laser Centre
  • 2015
  • Ingår i: Laser and Particle Beams. - 0263-0346. ; 33:1, s. 59-64
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on a setup for the investigation of proton acceleration in the regime of target normal sheath acceleration. The main interest here is to focus on stable laser beam parameters as well as a reliable target setup and diagnostics in order to do extensive and systematic studies on the acceleration mechanism. A motorized target alignment system in combination with large target mounts allows for up to 340 shots with high repetition rate without breaking the vacuum. This performance is used to conduct experiments with a split mirror setup exploring the effect of spatial and temporal separation between the pulses on the acceleration mechanism and on the resulting proton beam.
  •  
2.
  • Burza, Matthias, et al. (författare)
  • Hollow microspheres as targets for staged laser-driven proton acceleration
  • 2011
  • Ingår i: New Journal of Physics. - : Institute of Physics Publishing (IOPP). - 1367-2630. ; 13, s. 013030-
  • Tidskriftsartikel (refereegranskat)abstract
    • A coated hollow core microsphere is introduced as a novel targetin ultra-intense laser–matter interaction experiments. In particular, it facilitates staged laser-driven proton acceleration by combining conventional target normal sheath acceleration (TNSA), power recycling of hot laterally spreading electrons and staging in a very simple and cheap target geometry. During TNSA of protons from one area of the sphere surface, laterally spreading hot electrons form a charge wave. Due to the spherical geometry, this wave refocuses on the opposite side of the sphere, where an opening has been laser micromachined.This leads to a strong transient charge separation field being set up there, which can post-accelerate those TNSA protons passing through the hole at the right time. Experimentally, the feasibility of using such targets is demonstrated. A redistribution is encountered in the experimental proton energy spectra, as predicted by particle-in-cell simulations and attributed to transient fields set up by oscillating currents on the sphere surface.
  •  
3.
  • Burza, Matthias, et al. (författare)
  • Laser wakefield acceleration using wire produced double density ramps
  • 2013
  • Ingår i: Physical Review Special Topics. Accelerators and Beams. - 1098-4402. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel approach to implement and control electron injection into the accelerating phase of a laser wakefield accelerator is presented. It utilizes a wire, which is introduced into the flow of a supersonic gas jet creating shock waves and three regions of differing plasma electron density. If tailored appropriately, the laser plasma interaction takes place in three stages: Laser self-compression, electron injection, and acceleration in the second plasma wave period. Compared to self-injection by wave breaking of a nonlinear plasma wave in a constant density plasma, this scheme increases beam charge by up to 1 order of magnitude in the quasimonoenergetic regime. Electron acceleration in the second plasma wave period reduces electron beam divergence by approximate to 25%, and the localized injection at the density downramps results in spectra with less than a few percent relative spread. DOI: 10.1103/PhysRevSTAB.16.011301
  •  
4.
  • Genoud, Guillaume, et al. (författare)
  • Increasing energy coupling into plasma waves by tailoring the laser radial focal spot distribution in a laser wakefield accelerator
  • 2013
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 20:6
  • Tidskriftsartikel (refereegranskat)abstract
    • By controlling the focal spot quality with a deformable mirror, we are able to show that increasing the fraction of pulse energy contained within the central part of the focal spot, while keeping the total energy and central spot size constant, significantly increases the amount of energy transferred to the wakefield: Our measurements show that the laser loses significantly more laser energy and undergoes greater redshifting and that more charge is produced in the accelerated beam. Three dimensional particle in cell simulations performed with accurate representations of the measured focal spot intensity distribution confirm that energy in the wings of the focal spot is effectively wasted. Even though self-focusing occurs, energy in the wings of the focal spot distribution is not coupled into the wakefield, emphasising the vital importance of high quality focal spot profiles in experiments. (C) 2013 AIP Publishing LLC.
  •  
5.
  • Hansson, Martin, et al. (författare)
  • Down-ramp injection and independently controlled acceleration of electrons in a tailored laser wakefield accelerator
  • 2015
  • Ingår i: Physical Review Special Topics. Accelerators and Beams. - 1098-4402. ; 18:7
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on a study on controlled injection of electrons into the accelerating phase of a plasma wakefield accelerator by tailoring the target density distribution using two independent sources of gas. The tailored density distribution is achieved experimentally by inserting a narrow nozzle, with an orifice diameter of only 400 mu m, into a jet of gas supplied from a 2 mm diameter nozzle. The combination of these two nozzles is used to create two regions of different density connected by a density gradient. Using this setup we show independent control of the charge and energy distribution of the bunches of accelerated electron as well as decreased shot-to-shot fluctuations in these quantities compared to self-injection in a single gas jet. Although the energy spectra are broad after injection, simulations show that further acceleration acts to compress the energy distribution and to yield peaked energy spectra.
  •  
6.
  • Ju, J., et al. (författare)
  • Analysis of x-ray emission and electron dynamics in a capillary-guided laser wakefield accelerator
  • 2014
  • Ingår i: Physical Review Special Topics. Accelerators and Beams. - 1098-4402. ; 17:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The dynamics of electron acceleration driven by laser wakefield inside a 30.5 mm long dielectric capillary tube is analyzed using radiation emitted in the x-ray range. 3D particle-in-cell simulations, performed with parameters close to the experimental ones, show that in long plasmas, the accelerated electrons catch up and finally overrun the driving laser owing to a higher velocity of the electrons in the plasma. The electrons are then transversely scattered by the laser pulse, and penetrate the capillary wall where they generate bremsstrahlung radiation, modeled using geant4 simulations. The signature of bremsstrahlung radiation is detected using an x-ray camera, together with the betatron radiation emitted during electron acceleration in the plasma bubble. The reflection of betatron radiation from the inner capillary surface also accounts for a fraction of the observed signal on the x-ray camera. The simulation results are in agreement with the experimental ones and provide a detailed description of the electron and radiation properties, useful for the design of laser wakefield accelerators or radiation sources using long plasma media.
  •  
7.
  • Ju, J., et al. (författare)
  • Study of electron acceleration and x-ray radiation as a function of plasma density in capillary-guided laser wakefield accelerators
  • 2013
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 20:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Laser wakefield electron acceleration in the blow-out regime and the associated betatron X-ray radiation were investigated experimentally as a function of the plasma density in a configuration where the laser is guided. Dielectric capillary tubes were employed to assist the laser keeping self-focused over a long distance by collecting the laser energy around its central focal spot. With a 40 fs, 16 TW pulsed laser, electron bunches with tens of pC charge were measured to be accelerated to an energy up to 300 MeV, accompanied by X-ray emission with a peak brightness of the order of 10 21 ph/s/mm(2)/mrad(2)/0.1%BW. Electron trapping and acceleration were studied using the emitted X-ray beam distribution to map the acceleration process; the number of betatron oscillations performed by the electrons was inferred from the correlation between measured X-ray fluence and beam charge. A study of the stability of electron and X-ray generation suggests that the fluctuation of X-ray emission can be reduced by stabilizing the beam charge. The experimental results are in good agreement with 3D particle-in-cell (PIC) simulation. (C) 2013 AIP Publishing LLC.
  •  
8.
  • Mangles, S. P. D., et al. (författare)
  • Self-injection threshold in self-guided laser wakefield accelerators
  • 2012
  • Ingår i: Physical Review Special Topics. Accelerators and Beams. - 1098-4402. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A laser pulse traveling through a plasma can excite large amplitude plasma waves that can be used to accelerate relativistic electron beams in a very short distance-a technique called laser wakefield acceleration. Many wakefield acceleration experiments rely on the process of wave breaking, or self-injection, to inject electrons into the wave, while other injection techniques rely on operation without self-injection. We present an experimental study into the parameters, including the pulse energy, focal spot quality, and pulse power, that determine whether or not a wakefield accelerator will self-inject. By taking into account the processes of self-focusing and pulse compression we are able to extend a previously described theoretical model, where the minimum bubble size k(p)r(b) required for trapping is not constant but varies slowly with density and find excellent agreement with this model.
  •  
9.
  • Wahlström, Claes-Göran, et al. (författare)
  • Supersonic jets of hydrogen and helium for laser wakefield acceleration
  • 2016
  • Ingår i: Physical Review Accelerators and Beams. - 2469-9888. ; 19
  • Tidskriftsartikel (refereegranskat)abstract
    • The properties of laser wakefield accelerated electrons in supersonic gas flows of hydrogen and helium are investigated. At identical backing pressure, we find that electron beams emerging from helium show large variations in their spectral and spatial distributions, whereas electron beams accelerated in hydrogen plasmas show a higher degree of reproducibility. In an experimental investigation of the relation between neutral gas density and backing pressure, it is found that the resulting number density for helium is ∼30% higher than for hydrogen at the same backing pressure. The observed differences in electron beam properties between the two gases can thus be explained by differences in plasma electron density. This interpretation is verified by repeating the laser wakefield acceleration experiment using similar plasma electron densities for the two gases, which then yielded electron beams with similar properties.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy