SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wald L. L.) "

Sökning: WFRF:(Wald L. L.)

  • Resultat 1-10 av 21
  • [1]23Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Emerging Risk Factors, Collaboration, et al. (författare)
  • The Emerging Risk Factors Collaboration: analysis of individual data on lipid, inflammatory and other markers in over 1.1 million participants in 104 prospective studies of cardiovascular diseases
  • 2007
  • Ingår i: Eur J Epidemiol. - 0393-2990. ; 22:12, s. 839-69
  • Tidskriftsartikel (refereegranskat)abstract
    • Many long-term prospective studies have reported on associations of cardiovascular diseases with circulating lipid markers and/or inflammatory markers. Studies have not, however, generally been designed to provide reliable estimates under different circumstances and to correct for within-person variability. The Emerging Risk Factors Collaboration has established a central database on over 1.1 million participants from 104 prospective population-based studies, in which subsets have information on lipid and inflammatory markers, other characteristics, as well as major cardiovascular morbidity and cause-specific mortality. Information on repeat measurements on relevant characteristics has been collected in approximately 340,000 participants to enable estimation of and correction for within-person variability. Re-analysis of individual data will yield up to approximately 69,000 incident fatal or nonfatal first ever major cardiovascular outcomes recorded during about 11.7 million person years at risk. The primary analyses will involve age-specific regression models in people without known baseline cardiovascular disease in relation to fatal or nonfatal first ever coronary heart disease outcomes. This initiative will characterize more precisely and in greater detail than has previously been possible the shape and strength of the age- and sex-specific associations of several lipid and inflammatory markers with incident coronary heart disease outcomes (and, secondarily, with other incident cardiovascular outcomes) under a wide range of circumstances. It will, therefore, help to determine to what extent such associations are independent from possible confounding factors and to what extent such markers (separately and in combination) provide incremental predictive value.
  •  
4.
  •  
5.
  •  
6.
  • Di Angelantonio, E., et al. (författare)
  • Glycated Hemoglobin Measurement and Prediction of Cardiovascular Disease
  • 2014
  • Ingår i: Jama-Journal of the American Medical Association. - 0098-7484 .- 1538-3598. ; 311:12, s. 1225-1233
  • Tidskriftsartikel (refereegranskat)abstract
    • IMPORTANCE The value of measuring levels of glycated hemoglobin (HbA(1c)) for the prediction of first cardiovascular events is uncertain. OBJECTIVE To determine whether adding information on HbA(1c) values to conventional cardiovascular risk factors is associated with improvement in prediction of cardiovascular disease (CVD) risk. DESIGN, SETTING, AND PARTICIPANTS Analysis of individual-participant data available from 73 prospective studies involving 294 998 participants without a known history of diabetes mellitus or CVD at the baseline assessment. MAIN OUTCOMES AND MEASURES Measures of risk discrimination for CVD outcomes (eg, C-index) and reclassification (eg, net reclassification improvement) of participants across predicted 10-year risk categories of low (<5%), intermediate (5% to <7.5%), and high (>= 7.5%) risk. RESULTS During a median follow-up of 9.9 (interquartile range, 7.6-13.2) years, 20 840 incident fatal and nonfatal CVD outcomes (13 237 coronary heart disease and 7603 stroke outcomes) were recorded. In analyses adjusted for several conventional cardiovascular risk factors, there was an approximately J-shaped association between HbA(1c) values and CVD risk. The association between HbA(1c) values and CVD risk changed only slightly after adjustment for total cholesterol and triglyceride concentrations or estimated glomerular filtration rate, but this association attenuated somewhat after adjustment for concentrations of high-density lipoprotein cholesterol and C-reactive protein. The C-index for a CVD risk prediction model containing conventional cardiovascular risk factors alone was 0.7434 (95% CI, 0.7350 to 0.7517). The addition of information on HbA(1c) was associated with a C-index change of 0.0018 (0.0003 to 0.0033) and a net reclassification improvement of 0.42 (-0.63 to 1.48) for the categories of predicted 10-year CVD risk. The improvement provided by HbA(1c) assessment in prediction of CVD risk was equal to or better than estimated improvements for measurement of fasting, random, or postload plasma glucose levels. CONCLUSIONS AND RELEVANCE In a study of individuals without known CVD or diabetes, additional assessment of HbA(1c) values in the context of CVD risk assessment provided little incremental benefit for prediction of CVD risk.
  •  
7.
  • Ferizi, Uran, et al. (författare)
  • Diffusion MRI microstructure models with in vivo human brain Connectome data : Results from a multi-group comparison
  • 2017
  • Ingår i: NMR in Biomedicine. - : John Wiley and Sons. - 0952-3480 .- 1099-1492. ; 30:9
  • Tidskriftsartikel (refereegranskat)abstract
    • A large number of mathematical models have been proposed to describe the measured signal in diffusion-weighted (DW) magnetic resonance imaging (MRI). However, model comparison to date focuses only on specific subclasses, e.g. compartment models or signal models, and little or no information is available in the literature on how performance varies among the different types of models. To address this deficiency, we organized the 'White Matter Modeling Challenge' during the International Symposium on Biomedical Imaging (ISBI) 2015 conference. This competition aimed to compare a range of different kinds of models in their ability to explain a large range of measurable in vivo DW human brain data. Specifically, we assessed the ability of models to predict the DW signal accurately for new diffusion gradients and b values. We did not evaluate the accuracy of estimated model parameters, as a ground truth is hard to obtain. We used the Connectome scanner at the Massachusetts General Hospital, using gradient strengths of up to 300mT/m and a broad set of diffusion times. We focused on assessing the DW signal prediction in two regions: the genu in the corpus callosum, where the fibres are relatively straight and parallel, and the fornix, where the configuration of fibres is more complex. The challenge participants had access to three-quarters of the dataset and their models were ranked on their ability to predict the remaining unseen quarter of the data. The challenge provided a unique opportunity for a quantitative comparison of diverse methods from multiple groups worldwide. The comparison of the challenge entries reveals interesting trends that could potentially influence the next generation of diffusion-based quantitative MRI techniques. The first is that signal models do not necessarily outperform tissue models; in fact, of those tested, tissue models rank highest on average. The second is that assuming a non-Gaussian (rather than purely Gaussian) noise model provides little improvement in prediction of unseen data, although it is possible that this may still have a beneficial effect on estimated parameter values. The third is that preprocessing the training data, here by omitting signal outliers, and using signal-predicting strategies, such as bootstrapping or cross-validation, could benefit the model fitting. The analysis in this study provides a benchmark for other models and the data remain available to build up a more complete comparison in the future.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21
  • [1]23Nästa

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy