SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Walhovd Kristine B.) "

Sökning: WFRF:(Walhovd Kristine B.)

  • Resultat 1-10 av 17
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Fjell, Anders M, et al. (författare)
  • Brain Atrophy in Healthy Aging Is Related to CSF Levels of A{beta}1-42.
  • 2010
  • Ingår i: Cerebral cortex. - 1460-2199. ; 20:9, s. 2069-2079
  • Tidskriftsartikel (refereegranskat)abstract
    • Reduced levels of beta-amyloid(1-42) (Abeta1-42) and increased levels of tau proteins in the cerebrospinal fluid (CSF) are found in Alzheimer's disease (AD), likely reflecting Abeta deposition in plaques and neuronal and axonal damage. It is not known whether these biomarkers are associated with brain atrophy also in healthy aging. We tested the relationship between CSF levels of Abeta1-42 and tau (total tau and tau phosphorylated at threonine 181) proteins and 1-year brain atrophy in 71 cognitively normal elderly individuals. Results showed that under a certain threshold value, levels of Abeta1-42 correlated highly with 1-year change in a wide range of brain areas. The strongest relationships were not found in the regions most vulnerable early in AD. Above the threshold level, Abeta1-42 was not related to brain changes, but significant volume reductions as well as ventricular expansion were still seen. It is concluded that Abeta1-42 correlates with brain atrophy and ventricular expansion in a subgroup of cognitively normal elderly individuals but that reductions independent of CSF levels of Abeta1-42 is common. Further research and follow-up examinations over several years are needed to test whether degenerative pathology will eventually develop in the group of cognitively normal elderly individuals with low levels of Abeta1-42.
  •  
3.
  • Walhovd, Kristine B., et al. (författare)
  • Neurodevelopmental origins of lifespan changes in brain and cognition
  • 2016
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - 0027-8424 .- 1091-6490. ; 113:33, s. 9357-9362
  • Tidskriftsartikel (refereegranskat)abstract
    • Neurodevelopmental origins of functional variation in older age are increasingly being acknowledged, but identification of how early factors impact human brain and cognition throughout life has remained challenging. Much focus has been on age-specific mechanisms affecting neural foundations of cognition and their change. In contrast to this approach, we tested whether cerebral correlates of general cognitive ability (GCA) in development could be extended to the rest of the lifespan, and whether early factors traceable to prenatal stages, such as birth weight and parental education, may exert continuous influences. We measured the area of the cerebral cortex in a longitudinal sample of 974 individuals aged 4-88 y (1,633 observations). An extensive cortical region was identified wherein area related positively to GCA in development. By tracking area of the cortical region identified in the child sample throughout the lifespan, we showed that the cortical change trajectories of higher and lower GCA groups were parallel through life, suggesting continued influences of early life factors. Birth weight and parental education obtained from the Norwegian Mother-Child Cohort study were identified as such early factors of possible lifelong influence. Support for a genetic component was obtained in a separate twin sample (Vietnam Era Twin Study of Aging), but birth weight in the child sample had an effect on cortical area also when controlling for possible genetic differences in terms of parental height. Our results provide novel evidence for stability in brain-cognition relationships throughout life, and indicate that early life factors impact brain and cognition for the entire life course.
  •  
4.
  • Fjell, Anders M., et al. (författare)
  • Poor Self-Reported Sleep is Related to Regional Cortical Thinning in Aging but not Memory Decline-Results From the Lifebrain Consortium
  • 2021
  • Ingår i: Cerebral Cortex. - : Oxford University Press. - 1047-3211 .- 1460-2199. ; 31:4, s. 1953-1969
  • Tidskriftsartikel (refereegranskat)abstract
    • We examined whether sleep quality and quantity are associated with cortical and memory changes in cognitively healthy participants across the adult lifespan. Associations between self-reported sleep parameters (Pittsburgh Sleep Quality Index, PSQI) and longitudinal cortical change were tested using five samples from the Lifebrain consortium (n = 2205, 4363 MRIs, 18-92 years). In additional analyses, we tested coherence with cell-specific gene expression maps from the Allen Human Brain Atlas, and relations to changes in memory performance. "PSQI # 1 Subjective sleep quality" and "PSQI #5 Sleep disturbances" were related to thinning of the right lateral temporal cortex, with lower quality and more disturbances being associated with faster thinning. The association with "PSQI #5 Sleep disturbances" emerged after 60 years, especially in regions with high expression of genes related to oligodendrocytes and S1 pyramidal neurons. None of the sleep scales were related to a longitudinal change in episodic memory function, suggesting that sleep-related cortical changes were independent of cognitive decline. The relationship to cortical brain change suggests that self-reported sleep parameters are relevant in lifespan studies, but small effect sizes indicate that self-reported sleep is not a good biomarker of general cortical degeneration in healthy older adults.
  •  
5.
  • Fjell, Anders M., et al. (författare)
  • Self-reported sleep relates to hippocampal atrophy across the adult lifespan : results from the Lifebrain consortium
  • 2020
  • Ingår i: Sleep. - : Oxford University Press. - 0161-8105 .- 1550-9109. ; 43:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: Poor sleep is associated with multiple age-related neurodegenerative and neuropsychiatric conditions. The hippocampus plays a special role in sleep and sleep-dependent cognition, and accelerated hippocampal atrophy is typically seen with higher age. Hence, it is critical to establish how the relationship between sleep and hippocampal volume loss unfolds across the adult lifespan.Methods: Self-reported sleep measures and MRI-derived hippocampal volumes were obtained from 3105 cognitively normal participants (18–90 years) from major European brain studies in the Lifebrain consortium. Hippocampal volume change was estimated from 5116 MRIs from 1299 participants for whom longitudinal MRIs were available, followed up to 11 years with a mean interval of 3.3 years. Cross-sectional analyses were repeated in a sample of 21,390 participants from the UK Biobank.Results: No cross-sectional sleep—hippocampal volume relationships were found. However, worse sleep quality, efficiency, problems, and daytime tiredness were related to greater hippocampal volume loss over time, with high scorers showing 0.22% greater annual loss than low scorers. The relationship between sleep and hippocampal atrophy did not vary across age. Simulations showed that the observed longitudinal effects were too small to be detected as age-interactions in the cross-sectional analyses.Conclusions: Worse self-reported sleep is associated with higher rates of hippocampal volume decline across the adult lifespan. This suggests that sleep is relevant to understand individual differences in hippocampal atrophy, but limited effect sizes call for cautious interpretation.
  •  
6.
  • Fjell, Anders M., et al. (författare)
  • The genetic organization of longitudinal subcortical volumetric change is stable throughout the lifespan running title: Genetics of subcortical lifespan change
  • 2021
  • Ingår i: eLIFE. - : eLife Sciences Publications. - 2050-084X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Development and aging of the cerebral cortex show similar topographic organization and are governed by the same genes. It is unclear whether the same is true for subcortical regions, which follow fundamentally different ontogenetic and phylogenetic principles. We tested the hypothesis that genetically governed neurodevelopmental processes can be traced throughout life by assessing to which degree brain regions that develop together continue to change together through life. Analyzing over 6000 longitudinal MRIs of the brain, we used graph theory to identify five clusters of coordinated development, indexed as patterns of correlated volumetric change in brain structures. The clusters tended to follow placement along the cranial axis in embryonic brain development, suggesting continuity from prenatal stages, and correlated with cognition. Across independent longitudinal datasets, we demonstrated that developmental clusters were conserved through life. Twin-based genetic correlations revealed distinct sets of genes governing change in each cluster. Single nucleotide polymorphisms-based analyses of 38127 cross-sectional MRIs showed a similar pattern of genetic volume-volume correlations. In conclusion, coordination of subcortical change adheres to fundamental principles of lifespan continuity and genetic organization.
  •  
7.
  • Friedman, Barbara Bodorkos, et al. (författare)
  • Are People Ready for Personalized Brain Health? Perspectives of Research Participants in the Lifebrain Consortium
  • 2020
  • Ingår i: The Gerontologist. - : Oxford University Press. - 0016-9013 .- 1758-5341. ; 60:6, s. E374-E383
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND AND OBJECTIVES: A healthy brain is central to physical and mental well-being. In this multi-site, qualitative study, we investigated views and attitudes of adult participants in brain research studies on the brain and personalized brain health as well as interest in maintaining a healthy brain.DESIGN AND METHODS: We conducted individual interviews with 44 adult participants in brain research cohorts of the Lifebrain consortium in Spain, Norway, Germany, and the United Kingdom. The interviews were audio recorded, transcribed, and coded using a cross-country codebook. The interview data were analyzed using qualitative content analysis.RESULTS: Most participants did not focus on their own brain health and expressed uncertainty regarding how to maintain it. Those actively focusing on brain health often picked one specific strategy like diet or memory training. The participants were interested in taking brain health tests to learn about their individual risk of developing brain diseases, and were willing to take measures to maintain their brain health if personalized follow-up was provided and the measures had proven impact. The participants were interested in more information on brain health. No differences in responses were identified between age groups, sex, or countries.DISCUSSION AND IMPLICATIONS: Concise, practical, personalized, and evidence-based information about the brain may promote brain health. Based on our findings, we have launched an ongoing global brain health survey to acquire more extensive, quantitative, and representative data on public perception of personalized brain health.
  •  
8.
  • Glasø de Lange, Ann-Marie, et al. (författare)
  • White matter integrity as a marker for cognitive plasticity in aging
  • 2016
  • Ingår i: Neurobiology of Aging. - 0197-4580 .- 1558-1497. ; 47, s. 74-82
  • Tidskriftsartikel (refereegranskat)abstract
    • Age-related differences in white matter (WM) integrity are substantial, but it is unknown whether between subject variability in WM integrity influences the capacity for cognitive improvement. We investigated the effects of memory training related to active and passive control conditions in older adults and tested whether WM integrity at baseline was predictive of training benefits. We hypothesized that (1) memory improvement would be restricted to the training group, (2) widespread areas would show greater mean diffusivity (MD) and lower fractional anisotropy in older adults relative to young adults, and (3) within these areas, variability in WM microstructure in the older group would be predictive of training gains. The results showed that only the group receiving training improved their memory. Significant age differences in MD and fractional anisotropy were found in widespread areas. Within these areas, voxelwise analyses showed a negative relationship between MD and memory improvement in 3 clusters, indicating that WM integrity could serve as a marker for the ability to adapt in response to cognitive challenges in aging. 
  •  
9.
  • Gorbach, Tetiana, 1991-, et al. (författare)
  • Longitudinal association between hippocampus atrophy and episodic-memory decline in non-demented APOE ε4 carriers
  • 2020
  • Ingår i: Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring. - : John Wiley & Sons. - 2352-8729. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: The apolipoprotein E (APOE) ε4 allele is the main genetic risk factor for Alzheimer's disease (AD), accelerated cognitive aging, and hippocampal atrophy, but its influence on the association between hippocampus atrophy and episodic-memory decline in non-demented individuals remains unclear.Methods: We analyzed longitudinal (two to six observations) magnetic resonance imaging (MRI)–derived hippocampal volumes and episodic memory from 748 individuals (55 to 90 years at baseline, 50% female) from the European Lifebrain consortium.Results: The change-change association for hippocampal volume and memory was significant only in ε4 carriers (N = 173, r = 0.21, P = .007; non-carriers: N = 467, r = 0.073,P = .117). The linear relationship was significantly steeper for the carriers [t(629) =2.4, P = .013]. A similar trend toward a stronger change-change relation for carriers was seen in a subsample with more than two assessments.Discussion: These findings provide evidence for a difference in hippocampus-memory association between ε4 carriers and non-carriers, thus highlighting how genetic factors modulate the translation of the AD-related pathophysiological cascade into cognitive deficits.
  •  
10.
  • Halaas, Nathalie Bodd, et al. (författare)
  • CSF sTREM2 and Tau Work Together in Predicting Increased Temporal Lobe Atrophy in Older Adults.
  • 2020
  • Ingår i: Cerebral cortex (New York, N.Y. : 1991). - 1460-2199. ; 30:4, s. 2295-2306
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuroinflammation may be a key factor in brain atrophy in aging and age-related neurodegenerative disease. The objective of this study was to test the association between microglial expression of soluble Triggering Receptor Expressed on Myeloid Cells 2 (sTREM2), as a measure of neuroinflammation, and brain atrophy in cognitively unimpaired older adults. Brain magnetic resonance imagings (MRIs) and cerebrospinal fluid (CSF) sTREM2, total tau (t-tau), phosphorylated181 tau (p-tau), and Aβ42 were analyzed in 115 cognitively unimpaired older adults, classified according to the A/T/(N)-framework. MRIs were repeated after 2 (n = 95) and 4 (n = 62) years. High baseline sTREM2 was associated with accelerated cortical thinning in the temporal cortex of the left hemisphere, as well as bilateral hippocampal atrophy, independently of age, Aβ42, and tau. sTREM2-related atrophy only marginally increased with biomarker positivity across the AD continuum (A-T- #x2292; A+T- #x2292; A+T+) but was significantly stronger in participants with a high level of p-tau (T+). sTREM2-related cortical thinning correlated significantly with areas of high microglial-specific gene expression in the Allen Human Brain Atlas. In conclusion, increased CSF sTREM2 was associated with accelerated cortical and hippocampal atrophy in cognitively unimpaired older participants, particularly in individuals with tau pathology. This suggests a link between neuroinflammation, neurodegeneration, and amyloid-independent tauopathy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17
  • [1]2Nästa
Typ av publikation
tidskriftsartikel (16)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (16)
övrigt vetenskapligt (1)
Författare/redaktör
Fjell, Anders M. (15)
Walhovd, Kristine B (15)
Sørensen, Øystein (8)
Nyberg, Lars, 1966- (7)
Mowinckel, Athanasia ... (7)
Lindenberger, Ulman (6)
visa fler...
Bartrés-Faz, David (6)
Düzel, Sandra (6)
Kühn, Simone (5)
Idland, Ane-Victoria (5)
Watne, Leiv Otto (5)
Amlien, Inge K. (5)
Brandmaier, Andreas ... (5)
Solé-Padullés, Crist ... (5)
Vidal-Piñeiro, Didac (5)
Westerhausen, René (5)
Nyberg, Lars (4)
Drevon, Christian A. (4)
Sederevicius, Donata ... (4)
Blennow, Kaj, 1958 (3)
Zsoldos, Eniko (3)
Kietzmann, Tim C. (3)
Kievit, Rogier A. (3)
Roe, James M. (3)
Suri, Sana (3)
Pudas, Sara, Fil. Dr ... (3)
Grydeland, Håkon (3)
Sneve, Markus H. (3)
Zetterberg, Henrik, ... (2)
Dale, Anders M. (2)
Penninx, Brenda W. J ... (2)
Sexton, Claire (2)
Johansen-Berg, Heidi (2)
Kremen, William S. (2)
Buchmann, Nikolaus (2)
Demuth, Ilja (2)
Ebmeier, Klaus P. (2)
Ghisletta, Paolo (2)
Magnussen, Fredrik (2)
Macià, Didac (2)
Sexton, Claire E. (2)
Pudas, Sara, Docent, ... (2)
Wagner, Gerd (2)
Kievit, Rogier (2)
Krogsrud, Stine K. (2)
Panizzon, Matthew S. (2)
Rohani, Darius A. (2)
Henson, Richard N. (2)
Knights, Ethan (2)
Grydeland, Hakon (2)
visa färre...
Lärosäte
Umeå universitet (12)
Göteborgs universitet (3)
Lunds universitet (2)
Stockholms universitet (1)
Språk
Engelska (17)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (14)
Samhällsvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy