SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Walker S.) ;lar1:(miun)"

Sökning: WFRF:(Walker S.) > Mittuniversitetet

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahokas, E K, et al. (författare)
  • Minimal effect of water immersion on markers of inflammation and muscle damage after intensive exercise
  • 2019
  • Ingår i: Proc Physiol Soc 44.
  • Konferensbidrag (refereegranskat)abstract
    • Water immersion methods, such as cold water immersion and contrast water therapy are popular recovery interventions after athletic training and competition. Nevertheless, post-exercise cold water immersion may actually inhibit hypertrophic signalling pathways and muscle adaptation to training (1). It is has been commonly assumed that the mechanism of impaired training adaptation is mediated by blunted inflammatory responses to muscle-damaging exercise, although this assumption has been questioned by recent data (2). A weakness of previous studies is omission of active recovery in water immersion interventions, which would arguably be utilised in addition to water immersion by athletic populations. The aim of this study was to compare the influence of three water immersion methods, performed after active recovery, on inflammatory responses to muscle-damaging exercise. Nine male participants (age 20-35 y) performed an intensive exercise protocol, consisting of maximal jumps and sprinting, on four occasions. After each trial, participants completed one of four recovery protocols in a randomised, crossover design (ACT, active recovery only, 10 min cycling; heart rate 120-140 b/min; CWI, active recovery followed by 10 min cold water immersion, 10°C; TWI, active recovery followed by 10 min temperate water immersion, 24°C and CWT, active recovery followed by contrast water therapy, 10 min alternating 10°C and 38°C in 1 min cycles). The study was conducted in accordance with the Declaration of Helsinki and approved by the local ethical review board. Venous blood samples were collected pre-exercise and 5 min, 60 min, 24 h, 48 h and 96 h post-exercise, then analysed for myocyte chemoattractant protein 1 (MCP-1) and creatine kinase (CK) using ELISA and high-sensitivity C-reactive protein (hs-CRP) using a chemiluminescence assay. Two-way repeated measures ANOVA was used to compare biomarker concentrations between groups over time. There were no differences in biomarker concentrations during exercise and recovery between groups across the six time points, however main effects of time were present for all three markers (MCP-1: F(2.32, 18.56) = 23.1, p < 0.0001; CK: F(2.059, 16.47) = 8.74, p = 0.002; hs-CRP: F(1.07, 8.57 = 13.8, p = 0.005). Tukey’s post-hoc analysis of simple time effects revealed increases in MCP-1 at post-5 min versus pre in all groups except CWT. In TWI and CWI, MCP-1 was still elevated above pre at 60 min post-exercise. hs-CRP peaked at 24 h post-exercise in all groups. CK was elevated at post-60 versus pre in all groups and at post-24 except in CWT. Our findings suggest that use of cold or thermoneutral water immersion in combination with active recovery may slightly prolong the immediate post-exercise elevation in MCP-1 but have minimal overall effect on markers of inflammation and muscle damage.
  •  
2.
  • Ahokas, E. K., et al. (författare)
  • Water immersion methods do not alter muscle damage and inflammation biomarkers after high-intensity sprinting and jumping exercise
  • 2020
  • Ingår i: European Journal of Applied Physiology. - : Springer Science and Business Media LLC. - 1439-6319 .- 1439-6327. ; 120, s. 2625-2634
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: The aim of this study was to compare the efficacy of three water immersion interventions performed after active recovery compared to active recovery only on the resolution of inflammation and markers of muscle damage post-exercise. Methods: Nine physically active men (n = 9; age 20‒35 years) performed an intensive loading protocol, including maximal jumps and sprinting on four occasions. After each trial, one of three recovery interventions (10 min duration) was used in a random order: cold-water immersion (CWI, 10 °C), thermoneutral water immersion (TWI, 24 °C), contrast water therapy (CWT, alternately 10 °C and 38 °C). All of these methods were performed after an active recovery (10 min bicycle ergometer), and were compared to active recovery only (ACT). 5 min, 1, 24, 48, and 96 h after exercise bouts, immune response and recovery were assessed through leukocyte subsets, monocyte chemoattractant protein-1, myoglobin and high-sensitivity C-reactive protein concentrations. Results: Significant changes in all blood markers occurred at post-loading (p < 0.05), but there were no significant differences observed in the recovery between methods. However, retrospective analysis revealed significant trial-order effects for myoglobin and neutrophils (p < 0.01). Only lymphocytes displayed satisfactory reliability in the exercise response, with intraclass correlation coefficient > 0.5. Conclusions: The recovery methods did not affect the resolution of inflammatory and immune responses after high-intensity sprinting and jumping exercise. It is notable that the biomarker responses were variable within individuals. Thus, the lack of differences between recovery methods may have been influenced by the reliability of exercise-induced biomarker responses. 
  •  
3.
  • Lebreton, Sebastien, et al. (författare)
  • A Drosophila female pheromone elicits species-specific long-range attraction via an olfactory channel with dual specificity for sex and food
  • 2017
  • Ingår i: BMC Biology. - : Springer Science and Business Media LLC. - 1741-7007. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Mate finding and recognition in animals evolves during niche adaptation and involves social signals and habitat cues. Drosophila melanogaster and related species are known to be attracted to fermenting fruit for feeding and egg-laying, which poses the question of whether species-specific fly odours contribute to long-range premating communication. Results: We have discovered an olfactory channel in D. melanogaster with a dual affinity to sex and food odorants. Female flies release a pheromone, (Z)-4-undecenal (Z4-11Al), that elicits flight attraction in both sexes. Its biosynthetic precursor is the cuticular hydrocarbon (Z,Z)-7,11-heptacosadiene (7,11-HD), which is known to afford reproductive isolation between the sibling species D. melanogaster and D. simulans during courtship. Twin olfactory receptors, Or69aB and Or69aA, are tuned to Z4-11Al and food odorants, respectively. They are co-expressed in the same olfactory sensory neurons, and feed into a neural circuit mediating species-specific, long-range communication; however, the close relative D. simulans, which shares food resources with D. melanogaster, does not respond to Z4-11Al. Conclusion: The Or69aA and Or69aB isoforms have adopted dual olfactory traits. The underlying gene yields a collaboration between natural and sexual selection, which has the potential to drive speciation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy