SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Walter Martin) ;lar1:(nrm)"

Sökning: WFRF:(Walter Martin) > Naturhistoriska riksmuseet

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zamora, Juan Carlos, et al. (författare)
  • Considerations and consequences of allowing DNA sequence data as types of fungal taxa
  • 2018
  • Ingår i: IMA Fungus. - : INT MYCOLOGICAL ASSOC. - 2210-6340 .- 2210-6359. ; 9:1, s. 167-185
  • Tidskriftsartikel (refereegranskat)abstract
    • Nomenclatural type definitions are one of the most important concepts in biological nomenclature. Being physical objects that can be re-studied by other researchers, types permanently link taxonomy (an artificial agreement to classify biological diversity) with nomenclature (an artificial agreement to name biological diversity). Two proposals to amend the International Code of Nomenclature for algae, fungi, and plants (ICN), allowing DNA sequences alone (of any region and extent) to serve as types of taxon names for voucherless fungi (mainly putative taxa from environmental DNA sequences), have been submitted to be voted on at the 11th International Mycological Congress (Puerto Rico, July 2018). We consider various genetic processes affecting the distribution of alleles among taxa and find that alleles may not consistently and uniquely represent the species within which they are contained. Should the proposals be accepted, the meaning of nomenclatural types would change in a fundamental way from physical objects as sources of data to the data themselves. Such changes are conducive to irreproducible science, the potential typification on artefactual data, and massive creation of names with low information content, ultimately causing nomenclatural instability and unnecessary work for future researchers that would stall future explorations of fungal diversity. We conclude that the acceptance of DNA sequences alone as types of names of taxa, under the terms used in the current proposals, is unnecessary and would not solve the problem of naming putative taxa known only from DNA sequences in a scientifically defensible way. As an alternative, we highlight the use of formulas for naming putative taxa (candidate taxa) that do not require any modification of the ICN.
  •  
2.
  • Bergemann, Christian A., et al. (författare)
  • Constraining long-term fault activity in the brittle domain through in situ dating of hydrothermal monazite
  • 2018
  • Ingår i: Terra Nova. - : Wiley. - 0954-4879. ; 30:6, s. 440-446
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract SIMS Th–Pb dating of hydrothermal fissure-vein monazite-(Ce) has the unique potential to date multiple tectonic events under low-grade metamorphic brittle/ductile conditions over large time frames. Monazites-(Ce) from brittle fault systems in the Eastern Alps allow us to constrain their Cretaceous activity over 20 Ma within single crystals, recording all major tectonic events. Eo-Alpine formation of the fluid-filled fissure-veins occurred 90 Ma ago at 352 ± 19°C and 342 ± 42 MPa. This corresponds to peak conditions during regional metamorphism of the Cretaceous collisional nappe stacking. Several stages of dissolution–reprecipitation/recrystallization record fault activity between 84 and 70 Ma. Corresponding fluid inclusions indicate conditions of 229 ± 10°C and 143 ± 20 MPa. This correlates with the formation of sedimentary basins during post-orogenic extension associated with strike-slip movements. The results strengthen the hypothesis that many large fault systems in the Eastern Alps developed during the Cretaceous orogeny and became reactivated during Neogene Alpine tectonics.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy