SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Walter Michael) ;hsvcat:4"

Sökning: WFRF:(Walter Michael) > Lantbruksvetenskap

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Löbmann, Michael, et al. (författare)
  • The occurrence of pathogen suppressive soils in Sweden in relation soil biota, soil properties, and farming practices
  • 2016
  • Ingår i: Applied Soil Ecology. - : Elsevier BV. - 0929-1393 .- 1873-0272. ; 107, s. 57-65
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite more than 50 years of research and their great potential for sustainable pest management, pathogen suppressive soils remain poorly understood. We conducted a study on suppression of root rot disease symptoms associated with Pythium ultimum in untreated and heat-sterilized soil from ten southern Swedish farms with six different cropping and management regimes. Physical and chemical soil properties, soil nematodes belonging to different trophic guilds, and the predominant soil oomycetes were analyzed for their potential as indicators of soil suppressiveness. Six of the ten sampled soils were suppressive to P. ultimum disease symptoms. Suppressive or conducive properties of the soils from sites with permanent soil cover were related to the presence of live soil biota, while soils from sites with interrupted soil cover had suppressive or conducive effects unrelated to live soil biota. In soils with biologically conducive effects, soils had high or low cation nutrient content, while biologically suppressive soils had intermediate nutrient levels. No relationship was found between disease symptoms and the soil nematode trophic community or the predominant soil oomycetes. Permanent soil cover and a balanced nutrient supply were correlated with biologically suppressive effects on P. ultimum disease symptoms. (C) 2016 The Authors. Published by Elsevier B.V.
  •  
2.
  • Springmann, Marco, et al. (författare)
  • Options for keeping the food system within environmental limits
  • 2018
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 562:7728, s. 519-
  • Tidskriftsartikel (refereegranskat)abstract
    • The food system is a major driver of climate change, changes in land use, depletion of freshwater resources, and pollution of aquatic and terrestrial ecosystems through excessive nitrogen and phosphorus inputs. Here we show that between 2010 and 2050, as a result of expected changes in population and income levels, the environmental effects of the food system could increase by 50-90% in the absence of technological changes and dedicated mitigation measures, reaching levels that are beyond the planetary boundaries that define a safe operating space for humanity. We analyse several options for reducing the environmental effects of the food system, including dietary changes towards healthier, more plant-based diets, improvements in technologies and management, and reductions in food loss and waste. We find that no single measure is enough to keep these effects within all planetary boundaries simultaneously, and that a synergistic combination of measures will be needed to sufficiently mitigate the projected increase in environmental pressures.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy