SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wang Chunliang) ;hsvcat:2"

Sökning: WFRF:(Wang Chunliang) > Teknik

  • Resultat 1-10 av 65
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bernard, Olivier, et al. (författare)
  • Standardized evaluation system for left ventricular segmentation algorithms in 3D echocardiography.
  • 2016
  • Ingår i: IEEE Transactions on Medical Imaging. - : Institute of Electrical and Electronics Engineers (IEEE). - 0278-0062 .- 1558-254X. ; 35:4, s. 967-977
  • Tidskriftsartikel (refereegranskat)abstract
    • Real-time 3D Echocardiography (RT3DE) has been proven to be an accurate tool for left ventricular (LV) volume assessment. However, identification of the LV endocardium remains a challenging task, mainly because of the low tissue/blood contrast of the images combined with typical artifacts. Several semi and fully automatic algorithms have been proposed for segmenting the endocardium in RT3DE data in order to extract relevant clinical indices, but a systematic and fair comparison between such methods has so far been impossible due to the lack of a publicly available common database. Here, we introduce a standardized evaluation framework to reliably evaluate and compare the performance of the algorithms developed to segment the LV border in RT3DE. A database consisting of 45 multivendor cardiac ultrasound recordings acquired at different centers with corresponding reference measurements from 3 experts are made available. The algorithms from nine research groups were quantitatively evaluated and compared using the proposed online platform. The results showed that the best methods produce promising results with respect to the experts' measurements for the extraction of clinical indices, and that they offer good segmentation precision in terms of mean distance error in the context of the experts' variability range. The platform remains open for new submissions.
  •  
2.
  • Zhuang, Xiahai, et al. (författare)
  • Evaluation of algorithms for Multi-Modality Whole Heart Segmentation : An open-access grand challenge.
  • 2019
  • Ingår i: Medical Image Analysis. - : Elsevier BV. - 1361-8415 .- 1361-8423. ; 58
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge of whole heart anatomy is a prerequisite for many clinical applications. Whole heart segmentation (WHS), which delineates substructures of the heart, can be very valuable for modeling and analysis of the anatomy and functions of the heart. However, automating this segmentation can be challenging due to the large variation of the heart shape, and different image qualities of the clinical data. To achieve this goal, an initial set of training data is generally needed for constructing priors or for training. Furthermore, it is difficult to perform comparisons between different methods, largely due to differences in the datasets and evaluation metrics used. This manuscript presents the methodologies and evaluation results for the WHS algorithms selected from the submissions to the Multi-Modality Whole Heart Segmentation (MM-WHS) challenge, in conjunction with MICCAI 2017. The challenge provided 120 three-dimensional cardiac images covering the whole heart, including 60 CT and 60 MRI volumes, all acquired in clinical environments with manual delineation. Ten algorithms for CT data and eleven algorithms for MRI data, submitted from twelve groups, have been evaluated. The results showed that the performance of CT WHS was generally better than that of MRI WHS. The segmentation of the substructures for different categories of patients could present different levels of challenge due to the difference in imaging and variations of heart shapes. The deep learning (DL)-based methods demonstrated great potential, though several of them reported poor results in the blinded evaluation. Their performance could vary greatly across different network structures and training strategies. The conventional algorithms, mainly based on multi-atlas segmentation, demonstrated good performance, though the accuracy and computational efficiency could be limited. The challenge, including provision of the annotated training data and the blinded evaluation for submitted algorithms on the test data, continues as an ongoing benchmarking resource via its homepage (www.sdspeople.fudan.edu.cn/zhuangxiahai/0/mmwhs/).
  •  
3.
  •  
4.
  • Lidayová, Kristína, et al. (författare)
  • Fast vascular skeleton extraction algorithm
  • 2016
  • Ingår i: Pattern Recognition Letters. - : Elsevier. - 0167-8655 .- 1872-7344. ; 76, s. 67-75
  • Tidskriftsartikel (refereegranskat)abstract
    • Vascular diseases are a common cause of death, particularly in developed countries. Computerized image analysis tools play a potentially important role in diagnosing and quantifying vascular pathologies. Given the size and complexity of modern angiographic data acquisition, fast, automatic and accurate vascular segmentation is a challenging task.In this paper we introduce a fully automatic high-speed vascular skeleton extraction algorithm that is intended as a first step in a complete vascular tree segmentation program. The method takes a 3D unprocessed Computed Tomography Angiography (CTA) scan as input and produces a graph in which the nodes are centrally located artery voxels and the edges represent connections between them. The algorithm works in two passes where the first pass is designed to extract the skeleton of large arteries and the second pass focuses on smaller vascular structures. Each pass consists of three main steps. The first step sets proper parameters automatically using Gaussian curve fitting. In the second step different filters are applied to detect voxels - nodes - that are part of arteries. In the last step the nodes are connected in order to obtain a continuous centerline tree for the entire vasculature. Structures found, that do not belong to the arteries, are removed in a final anatomy-based analysis. The proposed method is computationally efficient with an average execution time of 29s and has been tested on a set of CTA scans of the lower limbs achieving an average overlap rate of 97% and an average detection rate of 71%.
  •  
5.
  • Wang, Chunliang, 1980-, et al. (författare)
  • CT scan range estimation using multiple body parts detection : let PACS learn the CT image content
  • 2016
  • Ingår i: International Journal of Computer Assisted Radiology and Surgery. - : Springer. - 1861-6410 .- 1861-6429. ; 11:2, s. 317-325
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: The aim of this study was to develop an efficient CT scan range estimation method that is based on the analysis of image data itself instead of metadata analysis. This makes it possible to quantitatively compare the scan range of two studies. Methods: In our study, 3D stacks are first projected to 2D coronal images via a ray casting-like process. Trained 2D body part classifiers are then used to recognize different body parts in the projected image. The detected candidate regions go into a structure grouping process to eliminate false-positive detections. Finally, the scale and position of the patient relative to the projected figure are estimated based on the detected body parts via a structural voting. The start and end lines of the CT scan are projected to a standard human figure. The position readout is normalized so that the bottom of the feet represents 0.0, and the top of the head is 1.0. Results: Classifiers for 18 body parts were trained using 184 CT scans. The final application was tested on 136 randomly selected heterogeneous CT scans. Ground truth was generated by asking two human observers to mark the start and end positions of each scan on the standard human figure. When compared with the human observers, the mean absolute error of the proposed method is 1.2 % (max: 3.5 %) and 1.6 % (max: 5.4 %) for the start and end positions, respectively. Conclusion: We proposed a scan range estimation method using multiple body parts detection and relative structure position analysis. In our preliminary tests, the proposed method delivered promising results.
  •  
6.
  • Wang, Chunliang, 1980-, et al. (författare)
  • Fast level-set based image segmentation using coherent propagation
  • 2014
  • Ingår i: Medical physics (Lancaster). - : John Wiley and Sons Ltd. - 0094-2405. ; 41:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: The level-set method is known to require long computation time for 3D image segmentation, which limits its usage in clinical workflow. The goal of this study was to develop a fast level-set algorithm based on the coherent propagation method and explore its character using clinical datasets. Methods: The coherent propagation algorithm allows level set functions to converge faster by forcing the contour to move monotonically according to a predicted developing trend. Repeated temporary backwards propagation, caused by noise or numerical errors, is then avoided. It also makes it possible to detect local convergence, so that the parts of the boundary that have reached their final position can be excluded in subsequent iterations, thus reducing computation time. To compensate for the overshoot error, forward and backward coherent propagation is repeated periodically. This can result in fluctuations of great magnitude in parts of the contour. In this paper, a new gradual convergence scheme using a damping factor is proposed to address this problem. The new algorithm is also generalized to non-narrow band cases. Finally, the coherent propagation approach is combined with a new distance-regularized level set, which eliminates the needs of reinitialization of the distance. Results: Compared with the sparse field method implemented in the widely available ITKSnap software, the proposed algorithm is about 10 times faster when used for brain segmentation and about 100 times faster for aorta segmentation. Using a multiresolution approach, the new method achieved 50 times speed-up in liver segmentation. The Dice coefficient between the proposed method and the sparse field method is above 99% in most cases. Conclusions: A generalized coherent propagation algorithm for level set evolution yielded substantial improvement in processing time with both synthetic datasets and medical images.
  •  
7.
  • Chen, Heping, et al. (författare)
  • Real-Time Cerebral Vessel Segmentation in Laser Speckle Contrast Image Based on Unsupervised Domain Adaptation
  • 2021
  • Ingår i: Frontiers in Neuroscience. - : Frontiers Media SA. - 1662-4548 .- 1662-453X. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Laser speckle contrast imaging (LSCI) is a full-field, high spatiotemporal resolution and low-cost optical technique for measuring blood flow, which has been successfully used for neurovascular imaging. However, due to the low signal-noise ratio and the relatively small sizes, segmenting the cerebral vessels in LSCI has always been a technical challenge. Recently, deep learning has shown its advantages in vascular segmentation. Nonetheless, ground truth by manual labeling is usually required for training the network, which makes it difficult to implement in practice. In this manuscript, we proposed a deep learning-based method for real-time cerebral vessel segmentation of LSCI without ground truth labels, which could be further integrated into intraoperative blood vessel imaging system. Synthetic LSCI images were obtained with a synthesis network from LSCI images and public labeled dataset of Digital Retinal Images for Vessel Extraction, which were then used to train the segmentation network. Using matching strategies to reduce the size discrepancy between retinal images and laser speckle contrast images, we could further significantly improve image synthesis and segmentation performance. In the testing LSCI images of rodent cerebral vessels, the proposed method resulted in a dice similarity coefficient of over 75%.
  •  
8.
  • Jimenez-del-Toro, Oscar, et al. (författare)
  • Cloud-Based Evaluation of Anatomical Structure Segmentation and Landmark Detection Algorithms : VISCERAL Anatomy Benchmarks
  • 2016
  • Ingår i: IEEE Transactions on Medical Imaging. - : Institute of Electrical and Electronics Engineers (IEEE). - 0278-0062 .- 1558-254X. ; 35:11, s. 2459-2475
  • Tidskriftsartikel (refereegranskat)abstract
    • Variations in the shape and appearance of anatomical structures in medical images are often relevant radiological signs of disease. Automatic tools can help automate parts of this manual process. A cloud-based evaluation framework is presented in this paper including results of benchmarking current state-of-the-art medical imaging algorithms for anatomical structure segmentation and landmark detection: the VISCERAL Anatomy benchmarks. The algorithms are implemented in virtual machines in the cloud where participants can only access the training data and can be run privately by the benchmark administrators to objectively compare their performance in an unseen common test set. Overall, 120 computed tomography and magnetic resonance patient volumes were manually annotated to create a standard Gold Corpus containing a total of 1295 structures and 1760 landmarks. Ten participants contributed with automatic algorithms for the organ segmentation task, and three for the landmark localization task. Different algorithms obtained the best scores in the four available imaging modalities and for subsets of anatomical structures. The annotation framework, resulting data set, evaluation setup, results and performance analysis from the three VISCERAL Anatomy benchmarks are presented in this article. Both the VISCERAL data set and Silver Corpus generated with the fusion of the participant algorithms on a larger set of non-manually-annotated medical images are available to the research community.
  •  
9.
  • Mendrik, AM, et al. (författare)
  • MRBrainS Challenge: Online Evaluation Framework for Brain Image Segmentation in 3T MRI Scans
  • 2015
  • Ingår i: Computational Intelligence and Neuroscience. - : Hindawi Publishing Corporation. - 1687-5265 .- 1687-5273. ; 2015
  • Tidskriftsartikel (refereegranskat)abstract
    • Many methods have been proposed for tissue segmentation in brain MRI scans. The multitude of methods proposed complicates the choice of one method above others. We have therefore established the MRBrainS online evaluation framework for evaluating (semi)automatic algorithms that segment gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) on 3T brain MRI scans of elderly subjects (65–80 y). Participants apply their algorithms to the provided data, after which their results are evaluated and ranked. Full manual segmentations of GM, WM, and CSF are available for all scans and used as the reference standard. Five datasets are provided for training and fifteen for testing. The evaluated methods are ranked based on their overall performance to segment GM, WM, and CSF and evaluated using three evaluation metrics (Dice, H95, and AVD) and the results are published on the MRBrainS13 website. We present the results of eleven segmentation algorithms that participated in the MRBrainS13 challenge workshop at MICCAI, where the framework was launched, and three commonly used freeware packages: FreeSurfer, FSL, and SPM. The MRBrainS evaluation framework provides an objective and direct comparison of all evaluated algorithms and can aid in selecting the best performing method for the segmentation goal at hand.
  •  
10.
  • Brusini, Irene, et al. (författare)
  • Shape Information Improves the Cross-Cohort Performance of Deep Learning-Based Segmentation of the Hippocampus
  • 2020
  • Ingår i: Frontiers in Neuroscience. - : Frontiers Media S.A.. - 1662-4548 .- 1662-453X. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • Performing an accurate segmentation of the hippocampus from brain magnetic resonance images is a crucial task in neuroimaging research, since its structural integrity is strongly related to several neurodegenerative disorders, including Alzheimer's disease (AD). Some automatic segmentation tools are already being used, but, in recent years, new deep learning (DL)-based methods have been proven to be much more accurate in various medical image segmentation tasks. In this work, we propose a DL-based hippocampus segmentation framework that embeds statistical shape of the hippocampus as context information into the deep neural network (DNN). The inclusion of shape information is achieved with three main steps: (1) a U-Net-based segmentation, (2) a shape model estimation, and (3) a second U-Net-based segmentation which uses both the original input data and the fitted shape model. The trained DL architectures were tested on image data of three diagnostic groups [AD patients, subjects with mild cognitive impairment (MCI) and controls] from two cohorts (ADNI and AddNeuroMed). Both intra-cohort validation and cross-cohort validation were performed and compared with the conventional U-net architecture and some variations with other types of context information (i.e., autocontext and tissue-class context). Our results suggest that adding shape information can improve the segmentation accuracy in cross-cohort validation, i.e., when DNNs are trained on one cohort and applied to another. However, no significant benefit is observed in intra-cohort validation, i.e., training and testing DNNs on images from the same cohort. Moreover, compared to other types of context information, the use of shape context was shown to be the most successful in increasing the accuracy, while keeping the computational time in the order of a few minutes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 65
Typ av publikation
tidskriftsartikel (33)
konferensbidrag (23)
doktorsavhandling (4)
bokkapitel (3)
annan publikation (2)
Typ av innehåll
refereegranskat (55)
övrigt vetenskapligt/konstnärligt (10)
Författare/redaktör
Wang, Chunliang, 198 ... (47)
Smedby, Örjan, Profe ... (23)
Smedby, Örjan (17)
Wang, Chunliang (15)
Smedby, Örjan, 1956- (8)
Astaraki, Mehdi, PhD ... (8)
visa fler...
Toma-Daşu, Iuliana (6)
Frimmel, Hans (5)
Persson, Anders (2)
Piehl, Fredrik (2)
Fransson, Sven Göran (2)
Wang, Chunliang, Doc ... (2)
Buizza, Giulia (2)
Lazzeroni, Marta (2)
Carrizo, Garrizo (2)
Unal, G. (1)
Zhao, L. (1)
Caballero, J. (1)
Zhang, Y. (1)
Mukherjee, R. (1)
Westman, Eric (1)
Yang, Guang (1)
Li, Lei (1)
Bauer, C (1)
Ourselin, Sébastien (1)
Engvall, Jan (1)
Kumar, Neeraj (1)
Wang, Chen (1)
Karlsson, Per (1)
Andersson, Leif (1)
Kahl, Fredrik, 1972 (1)
Dhooge, Jan (1)
Lindblad, Joakim (1)
Prahl Wittberg, Lisa (1)
Persson, Mikael, 195 ... (1)
Belavy, Daniel L (1)
Sladoje, Nataša (1)
Andersson, Olle (1)
Shi, W. (1)
Foncubierta-Rodrigue ... (1)
Goksel, Orcun (1)
Bengtsson, Ewert (1)
Frénay, M. (1)
Persson, Anders, Pro ... (1)
Lundström, Claes, 19 ... (1)
Zakko, Yousuf (1)
Toma-Dasu, Iuliana, ... (1)
Menze, Bjoern, Profe ... (1)
De Benetti, Francesc ... (1)
Yeganeh, Yousef (1)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (64)
Linköpings universitet (26)
Karolinska Institutet (8)
Uppsala universitet (5)
Stockholms universitet (2)
Chalmers tekniska högskola (2)
Språk
Engelska (65)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (15)
Naturvetenskap (11)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy