SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wang Chunliang) ;lar1:(su)"

Sökning: WFRF:(Wang Chunliang) > Stockholms universitet

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Astaraki, Mehdi, PhD Student, 1984-, et al. (författare)
  • A Comparative Study of Radiomics and Deep-Learning Based Methods for Pulmonary Nodule Malignancy Prediction in Low Dose CT Images
  • 2021
  • Ingår i: Frontiers in Oncology. - : Frontiers Media SA. - 2234-943X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: Both radiomics and deep learning methods have shown great promise in predicting lesion malignancy in various image-based oncology studies. However, it is still unclear which method to choose for a specific clinical problem given the access to the same amount of training data. In this study, we try to compare the performance of a series of carefully selected conventional radiomics methods, end-to-end deep learning models, and deep-feature based radiomics pipelines for pulmonary nodule malignancy prediction on an open database that consists of 1297 manually delineated lung nodules.Methods: Conventional radiomics analysis was conducted by extracting standard handcrafted features from target nodule images. Several end-to-end deep classifier networks, including VGG, ResNet, DenseNet, and EfficientNet were employed to identify lung nodule malignancy as well. In addition to the baseline implementations, we also investigated the importance of feature selection and class balancing, as well as separating the features learned in the nodule target region and the background/context region. By pooling the radiomics and deep features together in a hybrid feature set, we investigated the compatibility of these two sets with respect to malignancy prediction.Results: The best baseline conventional radiomics model, deep learning model, and deep-feature based radiomics model achieved AUROC values (mean ± standard deviations) of 0.792 ± 0.025, 0.801 ± 0.018, and 0.817 ± 0.032, respectively through 5-fold cross-validation analyses. However, after trying out several optimization techniques, such as feature selection and data balancing, as well as adding context features, the corresponding best radiomics, end-to-end deep learning, and deep-feature based models achieved AUROC values of 0.921 ± 0.010, 0.824 ± 0.021, and 0.936 ± 0.011, respectively. We achieved the best prediction accuracy from the hybrid feature set (AUROC: 0.938 ± 0.010).Conclusion: The end-to-end deep-learning model outperforms conventional radiomics out of the box without much fine-tuning. On the other hand, fine-tuning the models lead to significant improvements in the prediction performance where the conventional and deep-feature based radiomics models achieved comparable results. The hybrid radiomics method seems to be the most promising model for lung nodule malignancy prediction in this comparative study.
  •  
2.
  • Astaraki, Mehdi, PhD Student, 1984-, et al. (författare)
  • Benign-malignant pulmonary nodule classification in low-dose CT with convolutional features
  • 2021
  • Ingår i: Physica medica (Testo stampato). - : Elsevier BV. - 1120-1797 .- 1724-191X. ; 83, s. 146-153
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Low-Dose Computed Tomography (LDCT) is the most common imaging modality for lung cancer diagnosis. The presence of nodules in the scans does not necessarily portend lung cancer, as there is an intricate relationship between nodule characteristics and lung cancer. Therefore, benign-malignant pulmonary nodule classification at early detection is a crucial step to improve diagnosis and prolong patient survival. The aim of this study is to propose a method for predicting nodule malignancy based on deep abstract features.Methods: To efficiently capture both intra-nodule heterogeneities and contextual information of the pulmonary nodules, a dual pathway model was developed to integrate the intra-nodule characteristics with contextual attributes. The proposed approach was implemented with both supervised and unsupervised learning schemes. A random forest model was added as a second component on top of the networks to generate the classification results. The discrimination power of the model was evaluated by calculating the Area Under the Receiver Operating Characteristic Curve (AUROC) metric. Results: Experiments on 1297 manually segmented nodules show that the integration of context and target supervised deep features have a great potential for accurate prediction, resulting in a discrimination power of 0.936 in terms of AUROC, which outperformed the classification performance of the Kaggle 2017 challenge winner.Conclusion: Empirical results demonstrate that integrating nodule target and context images into a unified network improves the discrimination power, outperforming the conventional single pathway convolutional neural networks.
  •  
3.
  • Astaraki, Mehdi, PhD Student, 1984-, et al. (författare)
  • Early survival prediction in non-small cell lung cancer from PET/CT images using an intra-tumor partitioning method
  • 2019
  • Ingår i: Physica medica (Testo stampato). - : Elsevier BV. - 1120-1797 .- 1724-191X. ; 60, s. 58-65
  • Tidskriftsartikel (refereegranskat)abstract
    • PurposeTo explore prognostic and predictive values of a novel quantitative feature set describing intra-tumor heterogeneity in patients with lung cancer treated with concurrent and sequential chemoradiotherapy.MethodsLongitudinal PET-CT images of 30 patients with non-small cell lung cancer were analysed. To describe tumor cell heterogeneity, the tumors were partitioned into one to ten concentric regions depending on their sizes, and, for each region, the change in average intensity between the two scans was calculated for PET and CT images separately to form the proposed feature set. To validate the prognostic value of the proposed method, radiomics analysis was performed and a combination of the proposed novel feature set and the classic radiomic features was evaluated. A feature selection algorithm was utilized to identify the optimal features, and a linear support vector machine was trained for the task of overall survival prediction in terms of area under the receiver operating characteristic curve (AUROC).ResultsThe proposed novel feature set was found to be prognostic and even outperformed the radiomics approach with a significant difference (AUROCSALoP = 0.90 vs. AUROCradiomic = 0.71) when feature selection was not employed, whereas with feature selection, a combination of the novel feature set and radiomics led to the highest prognostic values.ConclusionA novel feature set designed for capturing intra-tumor heterogeneity was introduced. Judging by their prognostic power, the proposed features have a promising potential for early survival prediction.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy