SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wang H. L.) ;hsvcat:4"

Sökning: WFRF:(Wang H. L.) > Lantbruksvetenskap

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Groenen, M. A., et al. (författare)
  • Analyses of pig genomes provide insight into porcine demography and evolution
  • 2012
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 491:7424, s. 393-398
  • Tidskriftsartikel (refereegranskat)abstract
    • For 10,000 years pigs and humans have shared a close and complex relationship. From domestication to modern breeding practices, humans have shaped the genomes of domestic pigs. Here we present the assembly and analysis of the genome sequence of a female domestic Duroc pig (Sus scrofa) and a comparison with the genomes of wild and domestic pigs from Europe and Asia. Wild pigs emerged in South East Asia and subsequently spread across Eurasia. Our results reveal a deep phylogenetic split between European and Asian wild boars approximately 1 million years ago, and a selective sweep analysis indicates selection on genes involved in RNA processing and regulation. Genes associated with immune response and olfaction exhibit fast evolution. Pigs have the largest repertoire of functional olfactory receptor genes, reflecting the importance of smell in this scavenging animal. The pig genome sequence provides an important resource for further improvements of this important livestock species, and our identification of many putative disease-causing variants extends the potential of the pig as a biomedical model.
  •  
2.
  • Hudson, Lawrence N., et al. (författare)
  • The PREDICTS database : a global database of how local terrestrial biodiversity responds to human impacts
  • 2014
  • Ingår i: Ecology and Evolution. - : Wiley. - 2045-7758. ; 4:24, s. 4701-4735
  • Tidskriftsartikel (refereegranskat)abstract
    • Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species' threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project - and avert - future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups - including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems - ). We make site-level summary data available alongside this article. The full database will be publicly available in 2015.
  •  
3.
  • George, T. S., et al. (författare)
  • Organic phosphorus in the terrestrial environment : a perspective on the state of the art and future priorities
  • 2018
  • Ingår i: Plant and Soil. - : Springer Netherlands. - 0032-079X .- 1573-5036. ; 427:1-2, s. 191-208
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The dynamics of phosphorus (P) in the environment is important for regulating nutrient cycles in natural and managed ecosystems and an integral part in assessing biological resilience against environmental change. Organic P (P-o) compounds play key roles in biological and ecosystems function in the terrestrial environment being critical to cell function, growth and reproduction.Scope: We asked a group of experts to consider the global issues associated with P-o in the terrestrial environment, methodological strengths and weaknesses, benefits to be gained from understanding the P-o cycle, and to set priorities for P-o research.Conclusions: We identified seven key opportunities for P-o research including: the need for integrated, quality controlled and functionally based methodologies; assessment of stoichiometry with other elements in organic matter; understanding the dynamics of P-o in natural and managed systems; the role of microorganisms in controlling P-o cycles; the implications of nanoparticles in the environment and the need for better modelling and communication of the research. Each priority is discussed and a statement of intent for the P-o research community is made that highlights there are key contributions to be made toward understanding biogeochemical cycles, dynamics and function of natural ecosystems and the management of agricultural systems.
  •  
4.
  • Zhong, Ziqian, 1995, et al. (författare)
  • Disentangling the effects of vapor pressure deficit on northern terrestrial vegetation productivity
  • 2023
  • Ingår i: Science Advances. - 2375-2548. ; 9:32
  • Tidskriftsartikel (refereegranskat)abstract
    • The impact of atmospheric vapor pressure deficit (VPD) on plant photosynthesis has long been acknowledged, but large interactions with air temperature (T) and soil moisture (SM) still hinder a complete understanding of the influence of VPD on vegetation production across various climate zones. Here, we found a diverging response of productivity to VPD in the Northern Hemisphere by excluding interactive effects of VPD with T and SM. The interactions between VPD and T/SM not only offset the potential positive impact of warming on vegetation productivity but also amplifies the negative effect of soil drying. Notably, for high-latitude ecosystems, there occurs a pronounced shift in vegetation productivity's response to VPD during the growing season when VPD surpasses a threshold of 3.5 to 4.0 hectopascals. These results yield previously unknown insights into the role of VPD in terrestrial ecosystems and enhance our comprehension of the terrestrial carbon cycle's response to global warming.
  •  
5.
  • Bansal, Sheel, et al. (författare)
  • Practical Guide to Measuring Wetland Carbon Pools and Fluxes
  • 2023
  • Ingår i: Wetlands (Wilmington, N.C.). - : SPRINGER. - 0277-5212 .- 1943-6246. ; 43:8
  • Forskningsöversikt (refereegranskat)abstract
    • Wetlands cover a small portion of the world, but have disproportionate influence on global carbon (C) sequestration, carbon dioxide and methane emissions, and aquatic C fluxes. However, the underlying biogeochemical processes that affect wetland C pools and fluxes are complex and dynamic, making measurements of wetland C challenging. Over decades of research, many observational, experimental, and analytical approaches have been developed to understand and quantify pools and fluxes of wetland C. Sampling approaches range in their representation of wetland C from short to long timeframes and local to landscape spatial scales. This review summarizes common and cutting-edge methodological approaches for quantifying wetland C pools and fluxes. We first define each of the major C pools and fluxes and provide rationale for their importance to wetland C dynamics. For each approach, we clarify what component of wetland C is measured and its spatial and temporal representativeness and constraints. We describe practical considerations for each approach, such as where and when an approach is typically used, who can conduct the measurements (expertise, training requirements), and how approaches are conducted, including considerations on equipment complexity and costs. Finally, we review key covariates and ancillary measurements that enhance the interpretation of findings and facilitate model development. The protocols that we describe to measure soil, water, vegetation, and gases are also relevant for related disciplines such as ecology. Improved quality and consistency of data collection and reporting across studies will help reduce global uncertainties and develop management strategies to use wetlands as nature-based climate solutions.
  •  
6.
  •  
7.
  • Toreti, A, et al. (författare)
  • Narrowing uncertainties in the effects of elevated CO2 on crops
  • 2020
  • Ingår i: Nature Food. - : Springer Science and Business Media LLC. - 2662-1355. ; 1, s. 775-782
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant responses to rising atmospheric carbon dioxide (CO2) concentrations, together with projected variations in temperature and precipitation will determine future agricultural production. Estimates of the impacts of climate change on agriculture provide essential information to design effective adaptation strategies, and develop sustainable food systems. Here, we review the current experimental evidence and crop models on the effects of elevated CO2 concentrations. Recent concerted efforts have narrowed the uncertainties in CO2-induced crop responses so that climate change impact simulations omitting CO2 can now be eliminated. To address remaining knowledge gaps and uncertainties in estimating the effects of elevated CO2 and climate change on crops, future research should expand experiments on more crop species under a wider range of growing conditions, improve the representation of responses to climate extremes in crop models, and simulate additional crop physiological processes related to nutritional quality.
  •  
8.
  • Xiao, K., et al. (författare)
  • Crab bioturbation drives coupled iron-phosphate-sulfide cycling in mangrove and salt marsh soils
  • 2022
  • Ingår i: Geoderma. - : Elsevier BV. - 0016-7061. ; 424
  • Tidskriftsartikel (refereegranskat)abstract
    • Coastal wetlands sequestering abundant blue carbon in soils are biogeochemical hotspots and critical habitats for benthic animals like invertebrate fiddler crabs. Here, we reveal how crab bioturbation (i.e., burrowing activity) drives the redox geochemistry of ferrous iron (Fe(II)), phosphate (PO43-), and sulfide (S(-II)) under contrasting vegetation types and hydrological conditions. We used in-situ approaches of diffusive gradients in thin films to perform detailed mm-scale burrow observations in two subtropical wetlands with a vegetation gradient of mudflat-salt marsh-mangrove. Burrow flushing caused a top-down hydrologic connectivity through the crab burrows and thus created a deep depth for the occurrence of Fe(III) reduction and sulfate reduction which were accompanied by P mobilization. The burrow oxidation zone, indicated by lower concentrations of Fe(II), PO43- and S(-II), were shallower in mudflats and salt marshes than in mangroves due to the unique respiratory roots of mangrove plants. The redox of Fe(II), PO(4)(3-)and S(-II) in crab burrow was insensitive to the convection flow induced input of dissolved oxygen through the surrounding soil matrix, indicating the burrow soil is an independent microenvironment. Crab burrowing activities favored Fe-S coupling which is conductive the formation of pyrite and alkalinity generation. Overall, our in-situ high-resolution observations and porewater hydraulic dynamics revealed spatially variable soil geochemistry, active coupled cycling of Fe-P-S in crab burrows, and mm-scale hotspots of redox cycling within burrows.
  •  
9.
  • Zeng, Z. K., et al. (författare)
  • A new Buttiauxella phytase continuously hydrolyzes phytate and improves amino acid digestibility and mineral balance in growing pigs fed phosphorous-deficient diet
  • 2016
  • Ingår i: Journal of Animal Science. - : Oxford University Press (OUP). - 0021-8812 .- 1525-3163. ; 94:2, s. 629-638
  • Tidskriftsartikel (refereegranskat)abstract
    • Ten ileal T-cannulated pigs (19.26 ± 1.06 kg) were used to evaluate the effects of a novel Buttiauxella phytase on apparent ileal digestibility (AID) of AA and apparent total tract digestibility (ATTD) and hindgut disappearance of DM, GE, CP, crude fiber, NDF, and ADF as well as minerals balance. Pigs were fed in a duplicated 5 × 4 incomplete Latin square design (5 diets with 4 periods). Each period consisted of a 5-d adjustment period followed by a 3-d total collection of feces and urine and then a 2-d collection of ileal digesta. The 5 diets included a P-deficient basal diet (0.43% Ca and 0.38% total P) that was supplemented with 0 (negative control [NC]), 500, 1,000, or 20,000 phytase units (FTU)/kg phytase and a positive control (PC) diet that was P adequate (0.64% Ca and 0.52% total P). The addition of phytase to the NC diet improved (P < 0.05) AID of phytate from 11.1 to 62.8, 70.6, and 90.5% at the inclusion rates of 500, 1,000, and 20,000 FTU/kg, respectively. In general, phytase supplementation at a dose of 20,000 FTU/kg further increased (P < 0.05) AID of Ca, total P, and phytate and reduced (P < 0.05) the ileal phytate concentration compared with diets with 500 or 1,000 FTU/kg phytase. Pigs fed the diet with 20,000 FTU/kg phytase but not diets with 500 and 1,000 FTU/kg phytase showed improved (P < 0.05) ATTD of CP and AID of DM, GE, CP, Leu, Lys, Thr, Val, Asp, and Ser compared with pigs fed the PC or NC diet. However, hindgut disappearance of crude fiber and NDF (P < 0.05) were reduced in pigs fed the diet with 20,000 FTU/kg phytase compared with pigs fed the PC or NC diet. Pigs fed diets with 500 or 1,000 FTU/ kg phytase had greater ATTD and retention of Ca and P than pigs fed the NC diet but less compared with pigs fed the diet with 20,000 FTU/kg phytase. Supplementation of 20,000 FTU/kg phytase to the NC diet improved (P < 0.05) digestibility of Na, Mn, and Zn as well as retention (%) of Zn. Increasing phytase supplementation doses from 0 to 1,000 FTU/kg linearly improved (P < 0.05) retention of Mg; meanwhile, digestibility of Mg and Mn and AID of Thr showed a linear increase trend (P = 0.084). In conclusion, supplementation of the novel Buttiauxella phytase at doses up to 20,000 FTU/kg hydrolyzed most of the phytate (90%) and consequently further improved mineral and protein utilization.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy