SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wang Qiang) ;pers:(Zhang Li)"

Sökning: WFRF:(Wang Qiang) > Zhang Li

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
3.
  • Kristanl, Matej, et al. (författare)
  • The Seventh Visual Object Tracking VOT2019 Challenge Results
  • 2019
  • Ingår i: 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW). - : IEEE COMPUTER SOC. - 9781728150239 ; , s. 2206-2241
  • Konferensbidrag (refereegranskat)abstract
    • The Visual Object Tracking challenge VOT2019 is the seventh annual tracker benchmarking activity organized by the VOT initiative. Results of 81 trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years. The evaluation included the standard VOT and other popular methodologies for short-term tracking analysis as well as the standard VOT methodology for long-term tracking analysis. The VOT2019 challenge was composed of five challenges focusing on different tracking domains: (i) VOT-ST2019 challenge focused on short-term tracking in RGB, (ii) VOT-RT2019 challenge focused on "real-time" short-term tracking in RGB, (iii) VOT-LT2019 focused on long-term tracking namely coping with target disappearance and reappearance. Two new challenges have been introduced: (iv) VOT-RGBT2019 challenge focused on short-term tracking in RGB and thermal imagery and (v) VOT-RGBD2019 challenge focused on long-term tracking in RGB and depth imagery. The VOT-ST2019, VOT-RT2019 and VOT-LT2019 datasets were refreshed while new datasets were introduced for VOT-RGBT2019 and VOT-RGBD2019. The VOT toolkit has been updated to support both standard short-term, long-term tracking and tracking with multi-channel imagery. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The dataset, the evaluation kit and the results are publicly available at the challenge website(1).
  •  
4.
  • Yang, Rong, et al. (författare)
  • Inhomogeneous degradation in metal halide perovskites
  • 2017
  • Ingår i: Applied Physics Letters. - : AMER INST PHYSICS. - 0003-6951 .- 1077-3118. ; 111:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Although the rapid development of organic-inorganic metal halide perovskite solar cells has led to certified power conversion efficiencies of above 20%, their poor stability remains a major challenge, preventing their practical commercialization. In this paper, we investigate the intrinsic origin of the poor stability in perovskite solar cells by using a confocal fluorescence microscope. We find that the degradation of perovskite films starts from grain boundaries and gradually extend to the center of the grains. Firmly based on our findings, we further demonstrate that the device stability can be significantly enhanced by increasing the grain size of perovskite crystals. Our results have important implications to further enhance the stability of optoelectronic devices based on metal halide perovskites. Published by AIP Publishing.
  •  
5.
  • Zou, Wei, et al. (författare)
  • Minimising efficiency roll-off in high-brightness perovskite light-emitting diodes
  • 2018
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Efficiency roll-off is a major issue for most types of light-emitting diodes (LEDs), and its origins remain controversial. Here we present investigations of the efficiency roll-off in perovskite LEDs based on two-dimensional layered perovskites. By simultaneously measuring electroluminescence and photoluminescence on a working device, supported by transient photoluminescence decay measurements, we conclude that the efficiency roll-off in perovskite LEDs is mainly due to luminescence quenching which is likely caused by non-radiative Auger recombination. This detrimental effect can be suppressed by increasing the width of quantum wells, which can be easily realized in the layered perovskites by tuning the ratio of large and small organic cations in the precursor solution. This approach leads to the realization of a perovskite LED with a record external quantum efficiency of 12.7%, and the efficiency remains to be high, at approximately 10%, under a high current density of 500 mA cm(-2).
  •  
6.
  • Georgiou, Konstantinos, et al. (författare)
  • Genetic basis of PD-L1 overexpression in diffuse large B-cell lymphomas
  • 2016
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 127:24, s. 3026-3034
  • Tidskriftsartikel (refereegranskat)abstract
    • Diffuse large B-cell lymphoma (DLBCL) is one of the most common and aggressive types of B-cell lymphoma. Deregulation of proto-oncogene expression after a translocation, most notably to the immunoglobulin heavy-chain locus (IGH), is one of the hallmarks of DLBCL. Using whole-genome sequencing analysis, we have identified the PD-L1/PD-L2 locus as a recurrent translocation partner for IGH in DLBCL. PIM1 and TP63 were also identified as novel translocation partners for PD-L1/PD-L2. Fluorescence in situ hybridization was furthermore used to rapidly screen an expanded DLBCL cohort. Collectively, a subset of samples was found to be affected by gains (12%), amplifications (3%), and translocations (4%) of the PD-L1/PD-L2 locus. RNA sequencing data coupled with immunohistochemistry revealed that these cytogenetic alterations correlated with increased expression of PD-L1 but not of PD-L2. Moreover, cytogenetic alterations affecting the PD-L1/PD-L2 locus were more frequently observed in the non-germinal center B cell-like (non-GCB) subtype of DLBCL. These findings demonstrate the genetic basis of PD-L1 overexpression in DLBCL and suggest that treatments targeting the PD-1-PD-L1/PD-L2 axis might benefit DLBCL patients, especially those belonging to the more aggressive non-GCB subtype.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy