SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wang Y) ;lar1:(nrm)"

Sökning: WFRF:(Wang Y) > Naturhistoriska riksmuseet

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Luo, Q. (författare)
  • Optical characteristics of graptolite-bearing sediments and its implication for thermal maturity assessment
  • 2018
  • Ingår i: International Journal of Coal Geology. - Amsterdam : Elsevier. - 0166-5162 .- 1872-7840. ; 195, s. 386-401
  • Tidskriftsartikel (refereegranskat)abstract
    • Graptolite reflectance was thought to be one of the most useful thermal maturity indicators for graptolite bearing sediments, however, the relationship between graptolite reflectance and vitrinite reflectance is not well established. Graptolites, especially in the Wufeng–Longmaxi Formations from the Ordovician to Silurian of South China, have been mistaken for vitrinite-like particles or solid bitumen, which results in inconsistent data on the thermal maturity. In this paper, we have employed optical microscope techniques to describe the detailed optical characteristics of graptolites and solid bitumen in the Wufeng–Longmaxi Formations. Laboratory simulation of maturation was used to determine the relationship between graptolite reflectance and vitrinite reflectance. The organic constituents in the Wufeng–Longmaxi Formations are mainly composed of graptolites and solid bitumen. Granular and non-granular graptolites were observed in the Wufeng–Longmaxi Formations, with nongranular as the most common texture. Solid bitumen can be distinguished from non-granular graptolites by its coarse surface, weaker anisotropy, and lower random reflectance. The combination of non-polarized and polarized light is very helpful to distinguish solid bitumen from graptolite. For comparison, organic material from the early Ordovician Alum Shale Formation of Sweden and Estonia was also studied. The macerals of the Alum shales are mainly composed of lamalginites, mineral-bituminous groundmasses, graptolites, and solid bitumen.The major textures of the graptolites in the Sweden and Estonia sediments are non-granular and granular, respectively.Both non-granular graptolite and vitrinite reflectances display a systematic increase with the increase of heating temperature and time. The granular graptolites in the Estonian sample were gradually changed to nongranular graptolites following laboratory simulated maturation, indicating that granular graptolites can transform into non-granular graptolites with maturation. Solid bitumen in the Wufeng–Longmaxi Formations was derived from the solid residue of kerogen and/or post-oil bitumen. The graptolite random reflectance is a better thermal maturity indicator than graptolite maximum reflectance and is more precise due to the smaller standard deviation. Several equations are proposed to determine the thermal maturity of the graptolite-bearing sediments based on graptolite random reflectance, graptolite maximum reflectance and solid bitumen random reflectance.
  •  
3.
  •  
4.
  • Sodhi, Navjot S., et al. (författare)
  • Barcoding Indo-Malayan birds
  • 2007
  • Ingår i: The Raffles bulletin of zoology. - 0217-2445. ; 55:2, s. 397-398
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
5.
  • Zale, Rolf, 1954-, et al. (författare)
  • Growth of plants on the Late Weichselian ice-sheet during Greenland interstadial-1?
  • 2018
  • Ingår i: Quaternary Science Reviews. - : Elsevier. - 0277-3791 .- 1873-457X. ; 185, s. 222-229
  • Tidskriftsartikel (refereegranskat)abstract
    • Unglaciated forelands and summits protruding from ice-sheets are commonly portrayed as areas where plants first establish at the end of glacial cycles. But is this prevailing view of ice-free refugia too simplistic? Here, we present findings suggesting that surface debris supported plant communities far beyond the rim of the Late Weichselian Ice-sheet during Greenland interstadial 1 (GI-1 or Bolling-Altered interstadial). We base our interpretations upon findings from terrigenous sediments largely resembling 'plant-trash' deposits in North America (known to form as vegetation established on stagnant ice became buried along with glacial debris during the deglaciation). In our studied deposit, we found macrofossils (N = 10) overlapping with the deglaciation period of the area (9.5-10 cal kyr BP) as well as samples (N = 2) with ages ranging between 12.9 and 13.3 cal kyr BP. The latter ages indicate growth of at least graminoids during the GI-1 interstadial when the site was near the geographic center of the degrading ice-sheet. We suggest that exposure of englacial material during GI-1 created patches of supraglacial debris capable of supporting vascular plants three millennia before deglaciation. The composition and resilience of this early plant community remain uncertain. Yet, the younger group of macrofossils, in combination with pollen and ancient DNA analyses of inclusions, imply that shrubs (Salix sp., Betula sp. and Ericaceae sp) and even tree species (Larix) were present in the debris during the final deglaciation stage. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy