SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wang Yunpeng) "

Sökning: WFRF:(Wang Yunpeng)

  • Resultat 1-10 av 13
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Stahl, Eli A, et al. (författare)
  • Genome-wide association study identifies 30 loci associated with bipolar disorder.
  • 2019
  • Ingår i: Nature genetics. - 1546-1718 .- 1061-4036. ; 51:5, s. 793-803
  • Tidskriftsartikel (refereegranskat)abstract
    • Bipolar disorder is a highly heritable psychiatric disorder. We performed a genome-wide association study (GWAS) including 20,352 cases and 31,358 controls of European descent, with follow-up analysis of 822 variants with P < 1 × 10-4 in an additional 9,412 cases and 137,760 controls. Eight of the 19 variants that were genome-wide significant (P < 5 × 10-8) in the discovery GWAS were not genome-wide significant in the combined analysis, consistent with small effect sizes and limited power but also with genetic heterogeneity. In the combined analysis, 30 loci were genome-wide significant, including 20 newly identified loci. The significant loci contain genes encoding ion channels, neurotransmitter transporters and synaptic components. Pathway analysis revealed nine significantly enriched gene sets, including regulation of insulin secretion and endocannabinoid signaling. Bipolar I disorder is strongly genetically correlated with schizophrenia, driven by psychosis, whereas bipolar II disorder is more strongly correlated with major depressive disorder. These findings address key clinical questions and provide potential biological mechanisms for bipolar disorder.
  •  
2.
  • Sonderby, Ida E., et al. (författare)
  • Dose response of the 16p11.2 distal copy number variant on intracranial volume and basal ganglia
  • 2020
  • Ingår i: Molecular Psychiatry. - : Nature Publishing Group. - 1359-4184 .- 1476-5578. ; 25:3, s. 584-602
  • Tidskriftsartikel (refereegranskat)abstract
    • Carriers of large recurrent copy number variants (CNVs) have a higher risk of developing neurodevelopmental disorders. The 16p11.2 distal CNV predisposes carriers to e.g., autism spectrum disorder and schizophrenia. We compared subcortical brain volumes of 12 16p11.2 distal deletion and 12 duplication carriers to 6882 non-carriers from the large-scale brain Magnetic Resonance Imaging collaboration, ENIGMA-CNV. After stringent CNV calling procedures, and standardized FreeSurfer image analysis, we found negative dose-response associations with copy number on intracranial volume and on regional caudate, pallidum and putamen volumes (β = −0.71 to −1.37; P < 0.0005). In an independent sample, consistent results were obtained, with significant effects in the pallidum (β = −0.95, P = 0.0042). The two data sets combined showed significant negative dose-response for the accumbens, caudate, pallidum, putamen and ICV (P = 0.0032, 8.9 × 10−6, 1.7 × 10−9, 3.5 × 10−12 and 1.0 × 10−4, respectively). Full scale IQ was lower in both deletion and duplication carriers compared to non-carriers. This is the first brain MRI study of the impact of the 16p11.2 distal CNV, and we demonstrate a specific effect on subcortical brain structures, suggesting a neuropathological pattern underlying the neurodevelopmental syndromes.
  •  
3.
  • Córdova-Palomera, Aldo, et al. (författare)
  • Genetic control of variability in subcortical and intracranial volumes
  • 2020
  • Ingår i: Molecular Psychiatry. - : Nature Publishing Group. - 1359-4184 .- 1476-5578.
  • Tidskriftsartikel (refereegranskat)abstract
    • Sensitivity to external demands is essential for adaptation to dynamic environments, but comes at the cost of increased risk of adverse outcomes when facing poor environmental conditions. Here, we apply a novel methodology to perform genome-wide association analysis of mean and variance in ten key brain features (accumbens, amygdala, caudate, hippocampus, pallidum, putamen, thalamus, intracranial volume, cortical surface area, and cortical thickness), integrating genetic and neuroanatomical data from a large lifespan sample (n = 25,575 individuals; 8-89 years, mean age 51.9 years). We identify genetic loci associated with phenotypic variability in thalamus volume and cortical thickness. The variance-controlling loci involved genes with a documented role in brain and mental health and were not associated with the mean anatomical volumes. This proof-of-principle of the hypothesis of a genetic regulation of brain volume variability contributes to establishing the genetic basis of phenotypic variance (i.e., heritability), allows identifying different degrees of brain robustness across individuals, and opens new research avenues in the search for mechanisms controlling brain and mental health.
  •  
4.
  • de Jong, Simone, et al. (författare)
  • Applying polygenic risk scoring for psychiatric disorders to a large family with bipolar disorder and major depressive disorder
  • 2018
  • Ingår i: Communications Biology. - : Nature Publishing Group. - 2399-3642. ; 1
  • Tidskriftsartikel (refereegranskat)abstract
    • Psychiatric disorders are thought to have a complex genetic pathology consisting of interplay of common and rare variation. Traditionally, pedigrees are used to shed light on the latter only, while here we discuss the application of polygenic risk scores to also highlight patterns of common genetic risk. We analyze polygenic risk scores for psychiatric disorders in a large pedigree (n ~ 260) in which 30% of family members suffer from major depressive disorder or bipolar disorder. Studying patterns of assortative mating and anticipation, it appears increased polygenic risk is contributed by affected individuals who married into the family, resulting in an increasing genetic risk over generations. This may explain the observation of anticipation in mood disorders, whereby onset is earlier and the severity increases over the generations of a family. Joint analyses of rare and common variation may be a powerful way to understand the familial genetics of psychiatric disorders.
  •  
5.
  • Ellinghaus, David, et al. (författare)
  • Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci
  • 2016
  • Ingår i: Nature Genetics. - New York, USA : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 48:5, s. 510-518
  • Tidskriftsartikel (refereegranskat)abstract
    • We simultaneously investigated the genetic landscape of ankylosing spondylitis, Crohn's disease, psoriasis, primary sclerosing cholangitis and ulcerative colitis to investigate pleiotropy and the relationship between these clinically related diseases. Using high-density genotype data from more than 86,000 individuals of European ancestry, we identified 244 independent multidisease signals, including 27 new genome-wide significant susceptibility loci and 3 unreported shared risk loci. Complex pleiotropy was supported when contrasting multidisease signals with expression data sets from human, rat and mouse together with epigenetic and expressed enhancer profiles. The comorbidities among the five immune diseases were best explained by biological pleiotropy rather than heterogeneity (a subgroup of cases genetically identical to those with another disease, possibly owing to diagnostic misclassification, molecular subtypes or excessive comorbidity). In particular, the strong comorbidity between primary sclerosing cholangitis and inflammatory bowel disease is likely the result of a unique disease, which is genetically distinct from classical inflammatory bowel disease phenotypes.
  •  
6.
  • Grasby, Katrina L., et al. (författare)
  • The genetic architecture of the human cerebral cortex
  • 2020
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 367:6484, s. 1340-
  • Tidskriftsartikel (refereegranskat)abstract
    • The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder.
  •  
7.
  • Shuaishuai, Wang, et al. (författare)
  • Facile Chemoenzymatic Synthesis of O-Mannosyl Glycans
  • 2018
  • Ingår i: Angewandte Chemie International Edition. - : Wiley-VCH Verlagsgesellschaft. - 1433-7851 .- 1521-3773. ; 57:30, s. 9268-9273
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract O?Mannosylation is a vital protein modification involved in brain and muscle development whereas the biological relevance of O-mannosyl glycans has remained largely unknown owing to the lack of structurally defined glycoforms. An efficient scaffold synthesis/enzymatic extension (SSEE) strategy was developed to prepare such structures by combining gram-scale convergent chemical syntheses of three scaffolds and strictly controlled sequential enzymatic extension catalyzed by glycosyltransferases. In total, 45 O-mannosyl glycans were obtained, covering the majority of identified mammalian structures. Subsequent glycan microarray analysis revealed fine specificities of glycan-binding proteins and specific antisera.
  •  
8.
  • Smeland, Olav B., et al. (författare)
  • Identification of Genetic Loci Jointly Influencing Schizophrenia Risk and the Cognitive Traits of Verbal-Numerical Reasoning, Reaction Time, and General Cognitive Function
  • 2017
  • Ingår i: JAMA psychiatry. - : American Medical Association. - 2168-6238 .- 2168-622X. ; 74:10, s. 1065-1075
  • Tidskriftsartikel (refereegranskat)abstract
    • IMPORTANCE Schizophrenia is associated with widespread cognitive impairments. Although cognitive deficits are one of the factors most strongly associated with functional outcome in schizophrenia, current treatment strategies largely fail to ameliorate these impairments. To develop more efficient treatment strategies in patients with schizophrenia, a better understanding of the pathogenesis of these cognitive deficits is needed. Accumulating evidence indicates that genetic risk of schizophrenia may contribute to cognitive dysfunction. OBJECTIVE To identify genomic regions jointly influencing schizophrenia and the cognitive domains of reaction time and verbal-numerical reasoning, aswell as general cognitive function, a phenotype that captures the shared variation in performance across cognitive domains. DESIGN, SETTING, AND PARTICIPANTS Combining data from genome-wide association studies from multiple phenotypes using conditional false discovery rate analysis provides increased power to discover genetic variants and could elucidate shared molecular genetic mechanisms. Data from the following genome-wide association studies, published from July 24, 2014, to January 17, 2017, were combined: schizophrenia in the Psychiatric Genomics Consortium cohort (n = 79 757 [ cases, 34 486; controls, 45 271]); verbal-numerical reasoning (n = 36 035) and reaction time (n = 111 483) in the UK Biobank cohort; and general cognitive function in CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) (n = 53 949) and COGENT (Cognitive Genomics Consortium) (n = 27 888). MAIN OUTCOMES AND MEASURES Genetic loci identified by conditional false discovery rate analysis. Brain messenger RNA expression and brain expression quantitative trait locus functionality were determined. RESULTS Among the participants in the genome-wide association studies, 21 loci jointly influencing schizophrenia and cognitive traits were identified: 2 loci shared between schizophrenia and verbal-numerical reasoning, 6 loci shared between schizophrenia and reaction time, and 14 loci shared between schizophrenia and general cognitive function. One locus was shared between schizophrenia and 2 cognitive traits and represented the strongest shared signal detected (nearest gene TCF20; chromosome 22q13.2), and was shared between schizophrenia (z score, 5.01; P = 5.53 x 10(-7)), general cognitive function (z score, - 4.43; P = 9.42 x 10(-6)), and verbal-numerical reasoning (z score, - 5.43; P = 5.64 x 10(-8)). For 18 loci, schizophrenia risk alleles were associated with poorer cognitive performance. The implicated genes are expressed in the developmental and adult human brain. Replicable expression quantitative trait locus functionality was identified for 4 loci in the adult human brain. CONCLUSIONS AND RELEVANCE The discovered loci improve the understanding of the common genetic basis underlying schizophrenia and cognitive function, suggesting novel molecular genetic mechanisms.
  •  
9.
  • Chen, Chi-Hua, et al. (författare)
  • Leveraging genome characteristics to improve gene discovery for putamen subcortical brain structure
  • 2017
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322 .- 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Discovering genetic variants associated with human brain structures is an on-going effort. The ENIGMA consortium conducted genome-wide association studies (GWAS) with standard multi-study analytical methodology and identified several significant single nucleotide polymorphisms (SNPs). Here we employ a novel analytical approach that incorporates functional genome annotations (e.g., exon or 5′UTR), total linkage disequilibrium (LD) scores and heterozygosity to construct enrichment scores for improved identification of relevant SNPs. The method provides increased power to detect associated SNPs by estimating stratum-specific false discovery rate (FDR), where strata are classified according to enrichment scores. Applying this approach to the GWAS summary statistics of putamen volume in the ENIGMA cohort, a total of 15 independent significant SNPs were identified (conditional FDR < 0.05). In contrast, 4 SNPs were found based on standard GWAS analysis (P < 5 × 10−8). These 11 novel loci include GATAD2B, ASCC3, DSCAML1, and HELZ, which are previously implicated in various neural related phenotypes. The current findings demonstrate the boost in power with the annotation-informed FDR method, and provide insight into the genetic architecture of the putamen.
  •  
10.
  • Li, Xu, et al. (författare)
  • Diamond-like/graphite-like carbon composite films deposited by high-power impulse magnetron sputtering
  • 2020
  • Ingår i: Diamond and related materials. - : ELSEVIER SCIENCE SA. - 0925-9635 .- 1879-0062. ; 106
  • Tidskriftsartikel (refereegranskat)abstract
    • Diamond-like carbon (DLC)/graphite-like carbon (GLC) composite films were prepared with high-power impulse magnetron sputtering (HiPIMS) using a mixture of Ar and Ne as the sputtering gas. The effect of the Ne fraction in the sputtering gas on the surface morphology, carbon bonding structure, microstructure, mechanical properties, residual stress, and tribological performance of the deposited films were characterized using laser scanning confocal microscopy, Raman spectroscopy, nano-indentation, residual stress tester, and friction and wear testing using a ball-on- plate tribometer, respectively. The films have a composite surface structure consisting of sp(2)-rich GLC microparticles embedded in an sp(3)-rich DLC matrix. Both components can be controlled to some degree by varying the Ne fraction. Specifically, as the Ne fraction is increased, both the number and size of the GLC microparticles decreases, while the sp(3) content increases. The GLC microparticles in the film can reduce the real contact area in friction testing, decreasing the friction coefficient, while the sp(3)-rich DLC phase enables the high hardness and wear resistance of the films. By adjusting the Ne fraction during the HiPIMS process, DLC/GLC composite films with low friction and high wear resistance can be generated.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13
  • [1]2Nästa
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy