SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wardlaw Joanna M.) "

Sökning: WFRF:(Wardlaw Joanna M.)

  • Resultat 1-10 av 20
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Franceschini, Nora, et al. (författare)
  • GWAS and colocalization analyses implicate carotid intima-media thickness and carotid plaque loci in cardiovascular outcomes
  • 2018
  • Ingår i: Nature Communications. - 20411723 (ISSN). ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Carotid artery intima media thickness (cIMT) and carotid plaque are measures of subclinical atherosclerosis associated with ischemic stroke and coronary heart disease (CHD). Here, we undertake meta-analyses of genome-wide association studies (GWAS) in 71,128 individuals for cIMT, and 48,434 individuals for carotid plaque traits. We identify eight novel susceptibility loci for cIMT, one independent association at the previously-identified PINX1 locus, and one novel locus for carotid plaque. Colocalization analysis with nearby vascular expression quantitative loci (cis-eQTLs) derived from arterial wall and metabolic tissues obtained from patients with CHD identifies candidate genes at two potentially additional loci, ADAMTS9 and LOXL4. LD score regression reveals significant genetic correlations between cIMT and plaque traits, and both cIMT and plaque with CHD, any stroke subtype and ischemic stroke. Our study provides insights into genes and tissue-specific regulatory mechanisms linking atherosclerosis both to its functional genomic origins and its clinical consequences in humans.
2.
  • Adams, Hieab H. H., et al. (författare)
  • Novel genetic loci underlying human intracranial volume identified through genome-wide association
  • 2016
  • Ingår i: Nature Neuroscience. - 1097-6256 .- 1546-1726. ; 19:12, s. 1569-1582
  • Tidskriftsartikel (refereegranskat)abstract
    • Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five previously unknown loci for intracranial volume and confirmed two known signals. Four of the loci were also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (rho(genetic) = 0.748), which indicates a similar genetic background and allowed us to identify four additional loci through meta-analysis (N-combined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, and Parkinson's disease, and were enriched near genes involved in growth pathways, including PI3K-AKT signaling. These findings identify the biological underpinnings of intracranial volume and their link to physiological and pathological traits.
  •  
3.
  • Hibar, Derrek P., et al. (författare)
  • Novel genetic loci associated with hippocampal volume
  • 2017
  • Ingår i: Nature Communications. - 2041-1723 .- 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r(g) = -0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.
4.
  • Hibar, Derrek P., et al. (författare)
  • Common genetic variants influence human subcortical brain structures
  • 2015
  • Ingår i: Nature. - 0028-0836. ; 520:7546, s. 224-U216
  • Tidskriftsartikel (refereegranskat)abstract
    • The highly complex structure of the human brain is strongly shaped by genetic influences(1). Subcortical brain regions form circuits with cortical areas to coordinate movement(2), learning, memory(3) and motivation(4), and altered circuits can lead to abnormal behaviour and disease(5). To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume(5) and intracranial volume(6). These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 X 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.
  •  
5.
  • Satizabal, Claudia L., et al. (författare)
  • Genetic architecture of subcortical brain structures in 38,851 individuals
  • 2019
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 51:11, s. 1624-
  • Tidskriftsartikel (refereegranskat)abstract
    • Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease.
  •  
6.
  • Thompson, P. M., et al. (författare)
  • The ENIGMA Consortium : large-scale collaborative analyses of neuroimaging and genetic data
  • 2014
  • Ingår i: BRAIN IMAGING BEHAV. - 1931-7557. ; 8:2, s. 153-182
  • Tidskriftsartikel (refereegranskat)abstract
    • The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects. By meta-analyzing results from many sites, ENIGMA has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected. ENIGMA's first project was a genome-wide association study identifying common variants in the genome associated with hippocampal volume or intracranial volume. Continuing work is exploring genetic associations with subcortical volumes (ENIGMA2) and white matter microstructure (ENIGMA-DTI). Working groups also focus on understanding how schizophrenia, bipolar illness, major depression and attention deficit/hyperactivity disorder (ADHD) affect the brain. We review the current progress of the ENIGMA Consortium, along with challenges and unexpected discoveries made on the way.
  •  
7.
  • De Guio, François, et al. (författare)
  • Reproducibility and variability of quantitative magnetic resonance imaging markers in cerebral small vessel disease
  • 2016
  • Ingår i: Journal of Cerebral Blood Flow and Metabolism. - Nature Publishing Group. - 0271-678X. ; 36:8, s. 1319-1337
  • Forskningsöversikt (refereegranskat)abstract
    • Brain imaging is essential for the diagnosis and characterization of cerebral small vessel disease. Several magnetic resonance imaging markers have therefore emerged, providing new information on the diagnosis, progression, and mechanisms of small vessel disease. Yet, the reproducibility of these small vessel disease markers has received little attention despite being widely used in cross-sectional and longitudinal studies. This review focuses on the main small vessel disease-related markers on magnetic resonance imaging including: white matter hyperintensities, lacunes, dilated perivascular spaces, microbleeds, and brain volume. The aim is to summarize, for each marker, what is currently known about: (1) its reproducibility in studies with a scan-rescan procedure either in single or multicenter settings; (2) the acquisition-related sources of variability; and, (3) the techniques used to minimize this variability. Based on the results, we discuss technical and other challenges that need to be overcome in order for these markers to be reliably used as outcome measures in future clinical trials. We also highlight the key points that need to be considered when designing multicenter magnetic resonance imaging studies of small vessel disease.
  •  
8.
  • Dichgans, Martin, et al. (författare)
  • METACOHORTS for the study of vascular disease and its contribution to cognitive decline and neurodegeneration : An initiative of the Joint Programme for Neurodegenerative Disease Research
  • 2016
  • Ingår i: Alzheimer's and Dementia. - Wiley. - 1552-5260. ; 12:12, s. 1235-1249
  • Tidskriftsartikel (refereegranskat)abstract
    • Dementia is a global problem and major target for health care providers. Although up to 45% of cases are primarily or partly due to cerebrovascular disease, little is known of these mechanisms or treatments because most dementia research still focuses on pure Alzheimer's disease. An improved understanding of the vascular contributions to neurodegeneration and dementia, particularly by small vessel disease, is hampered by imprecise data, including the incidence and prevalence of symptomatic and clinically “silent” cerebrovascular disease, long-term outcomes (cognitive, stroke, or functional), and risk factors. New large collaborative studies with long follow-up are expensive and time consuming, yet substantial data to advance the field are available. In an initiative funded by the Joint Programme for Neurodegenerative Disease Research, 55 international experts surveyed and assessed available data, starting with European cohorts, to promote data sharing to advance understanding of how vascular disease affects brain structure and function, optimize methods for cerebrovascular disease in neurodegeneration research, and focus future research on gaps in knowledge. Here, we summarize the results and recommendations from this initiative. We identified data from over 90 studies, including over 660,000 participants, many being additional to neurodegeneration data initiatives. The enthusiastic response means that cohorts from North America, Australasia, and the Asia Pacific Region are included, creating a truly global, collaborative, data sharing platform, linked to major national dementia initiatives. Furthermore, the revised World Health Organization International Classification of Diseases version 11 should facilitate recognition of vascular-related brain damage by creating one category for all cerebrovascular disease presentations and thus accelerate identification of targets for dementia prevention.
9.
  •  
10.
  • Jackson, Caroline A, et al. (författare)
  • Differing Risk Factor Profiles of Ischemic Stroke Subtypes: Evidence for a Distinct Lacunar Arteriopathy?
  • 2010
  • Ingår i: Stroke: a journal of cerebral circulation. - American Heart Association. - 1524-4628. ; 41:4, s. 624-629
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND AND PURPOSE: Differences in risk factor profiles between lacunar and other ischemic stroke subtypes may provide evidence for a distinct lacunar arteriopathy, but existing studies have limitations. We overcame these by pooling individual data on 2875 patients with first-ever ischemic stroke from 5 collaborating prospective stroke registers that used similar, unbiased methods to define risk factors and classify stroke subtypes. METHODS: We compared risk factors between lacunar and nonlacunar ischemic strokes, altering the comparison groups in sensitivity analyses, and incorporated these data into a meta-analysis of published studies. RESULTS: Unadjusted and adjusted analyses gave similar results. We found a lower prevalence of cardioembolic source (adjusted odds ratio, 0.33; 95% CI, 0.24 to 0.46), ipsilateral carotid stenosis (odds ratio, 0.21; 95% CI, 0.14 to 0.30), and ischemic heart disease (odds ratio, 0.75; 95% CI, 0.58 to 0.97) in lacunar compared with nonlacunar patients but no difference for hypertension, diabetes, or any other risk factor studied. Results were robust to sensitivity analyses and largely confirmed in our meta-analysis. CONCLUSIONS: Hypertension and diabetes appear equally common in lacunar and nonlacunar ischemic stroke, but lacunar stroke is less likely to be caused by embolism from the heart or proximal arteries, and the lower prevalence of ischemic heart disease in lacunar stroke provides additional support for a nonatherosclerotic arteriopathy causing many lacunar ischemic strokes. Our findings have implications for how clinicians classify ischemic stroke subtypes and highlight the need for additional research into the specific causes of and treatments for lacunar stroke.
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20
  • [1]2Nästa
Åtkomst
fritt online (5)
Typ av publikation
tidskriftsartikel (16)
forskningsöversikt (4)
Typ av innehåll
refereegranskat (20)
övrigt vetenskapligt (1)
Författare/redaktör
Seshadri, Sudha, (7)
Jahanshad, Neda, (6)
Armstrong, Nicola J. ... (6)
Den Braber, Anouk, (6)
Ehrlich, Stefan, (6)
Luciano, Michelle, (6)
visa fler...
Mather, Karen A., (6)
Roiz-Santianez, Robe ... (6)
Teumer, Alexander, (6)
Franke, Barbara, (5)
Hibar, Derrek P., (5)
Stein, Jason L., (5)
Desrivieres, Sylvane ... (5)
Alhusaini, Saud, (5)
Bis, Joshua C., (5)
Bralten, Janita, (5)
Chakravarty, M. Mall ... (5)
Chauhan, Ganesh, (5)
Ching, Christopher R ... (5)
Giddaluru, Sudheer, (5)
Grimm, Oliver, (5)
Guadalupe, Tulio, (5)
Haukvik, Unn K., (5)
Hoehn, David, (5)
Holmes, Avram J., (5)
Hoogman, Martine, (5)
Jia, Tianye, (5)
Kasperaviciute, Dali ... (5)
Kim, Sungeun, (5)
Kraemer, Bernd, (5)
Lee, Phil H., (5)
Matarin, Mar, (5)
Mattheisen, Manuel, (5)
Mazoyer, Bernard, (5)
Milaneschi, Yuri, (5)
Nho, Kwangsik, (5)
Papmeyer, Martina, (5)
Puetz, Benno, (5)
Risacher, Shannon L. ... (5)
Saemann, Philipp G., (5)
Schmaal, Lianne, (5)
Schork, Andrew J., (5)
Shen, Li, (5)
Shin, Jean, (5)
Strike, Lachlan T., (5)
Tordesillas-Gutierre ... (5)
Toro, Roberto, (5)
Westlye, Lars T., (5)
Whelan, Christopher ... (5)
Wolf, Christiane, (5)
visa färre...
Lärosäte
Lunds universitet (12)
Karolinska Institutet (8)
Uppsala universitet (6)
Umeå universitet (5)
Göteborgs universitet (3)
Stockholms universitet (2)
Språk
Engelska (19)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (19)
Naturvetenskap (2)
Samhällsvetenskap (1)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy