SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wareham Nick J.) "

Sökning: WFRF:(Wareham Nick J.)

Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wain, Louise V., et al. (författare)
  • Novel Blood Pressure Locus and Gene Discovery Using Genome-Wide Association Study and Expression Data Sets From Blood and the Kidney
  • 2017
  • Ingår i: Hypertension. - 0194-911X .- 1524-4563. ; 70:3, s. e4-e19
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Elevated blood pressure is a major risk factor for cardiovascular disease and has a substantial genetic contribution. Genetic variation influencing blood pressure has the potential to identify new pharmacological targets for the treatment of hypertension. To discover additional novel blood pressure loci, we used 1000 Genomes Project-based imputation in 150 134 European ancestry individuals and sought significant evidence for independent replication in a further 228 245 individuals. We report 6 new signals of association in or near HSPB7, TNXB, LRP12, LOC283335, SEPT9, and AKT2, and provide new replication evidence for a further 2 signals in EBF2 and NFKBIA. Combining large whole-blood gene expression resources totaling 12 607 individuals, we investigated all novel and previously reported signals and identified 48 genes with evidence for involvement in blood pressure regulation that are significant in multiple resources. Three novel kidney-specific signals were also detected. These robustly implicated genes may provide new leads for therapeutic innovation.</p>
  •  
2.
  • Warren, Helen R., et al. (författare)
  • Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk
  • 2017
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 49:3, s. 403-415
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Elevated blood pressure is the leading heritable risk factor for cardiovascular disease worldwide. We report genetic association of blood pressure (systolic, diastolic, pulse pressure) among UK Biobank participants of European ancestry with independent replication in other cohorts, and robust validation of 107 independent loci. We also identify new independent variants at 11 previously reported blood pressure loci. In combination with results from a range of in silico functional analyses and wet bench experiments, our findings highlight new biological pathways for blood pressure regulation enriched for genes expressed in vascular tissues and identify potential therapeutic targets for hypertension. Results from genetic risk score models raise the possibility of a precision medicine approach through early lifestyle intervention to offset the impact of blood pressure-raising genetic variants on future cardiovascular disease risk.</p>
  •  
3.
  • Ehret, Georg B., et al. (författare)
  • Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk
  • 2011
  • Ingår i: Nature. - Nature Publishing Group. - 0028-0836. ; 478:7367, s. 103-109
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood pressure is a heritable trait(1) influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (>= 140 mm Hg systolic blood pressure or >= 90 mm Hg diastolic blood pressure)(2). Even small increments in blood pressure are associated with an increased risk of cardiovascular events(3). This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention.
  •  
4.
  • Ehret, Georg B., et al. (författare)
  • Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk
  • 2011
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 478:7367, s. 103-109
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Blood pressure is a heritable trait(1) influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (&gt;= 140 mm Hg systolic blood pressure or &gt;= 90 mm Hg diastolic blood pressure)(2). Even small increments in blood pressure are associated with an increased risk of cardiovascular events(3). This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention.</p>
  •  
5.
  • Schunkert, Heribert, et al. (författare)
  • Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease
  • 2011
  • Ingår i: Nature Genetics. - Nature Publishing Group. - 1546-1718. ; 43:4, s. 153-333
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed a meta-analysis of 14 genome-wide association studies of coronary artery disease (CAD) comprising 22,233 individuals with CAD (cases) and 64,762 controls of European descent followed by genotyping of top association signals in 56,682 additional individuals. This analysis identified 13 loci newly associated with CAD at P < 5 x 10(-8) and confirmed the association of 10 of 12 previously reported CAD loci. The 13 new loci showed risk allele frequencies ranging from 0.13 to 0.91 and were associated with a 6% to 17% increase in the risk of CAD per allele. Notably, only three of the new loci showed significant association with traditional CAD risk factors and the majority lie in gene regions not previously implicated in the pathogenesis of CAD. Finally, five of the new CAD risk loci appear to have pleiotropic effects, showing strong association with various other human diseases or traits.
  •  
6.
  • Surendran, Praveen, et al. (författare)
  • Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension
  • 2016
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 48:10, s. 1151-1161
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>High blood pressure is a major risk factor for cardiovascular disease and premature death. However, there is limited knowledge on specific causal genes and pathways. To better understand the genetics of blood pressure, we genotyped 242,296 rare, low frequency and common genetic variants in up to 192,763 individuals and used similar to 155,063 samples for independent replication. We identified 30 new blood pressure- or hypertension-associated genetic regions in the general population, including 3 rare missense variants in RBM47, COL21A1 and RRAS with larger effects (&gt;1.5 mm Hg/allele) than common variants. Multiple rare nonsense and missense variant associations were found in A2ML1, and a low-frequency nonsense variant in ENPEP was identified. Our data extend the spectrum of allelic variation underlying blood pressure traits and hypertension, provide new insights into the pathophysiology of hypertension and indicate new targets for clinical intervention.</p>
  •  
7.
  • Surendran, Praveen, et al. (författare)
  • Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension
  • 2016
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 48:10, s. 1151-1161
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>High blood pressure is a major risk factor for cardiovascular disease and premature death. However, there is limited knowledge on specific causal genes and pathways. To better understand the genetics of blood pressure, we genotyped 242,296 rare, low frequency and common genetic variants in up to 192,763 individuals and used similar to 155,063 samples for independent replication. We identified 30 new blood pressure- or hypertension-associated genetic regions in the general population, including 3 rare missense variants in RBM47, COL21A1 and RRAS with larger effects (&gt;1.5 mm Hg/allele) than common variants. Multiple rare nonsense and missense variant associations were found in A2ML1, and a low-frequency nonsense variant in ENPEP was identified. Our data extend the spectrum of allelic variation underlying blood pressure traits and hypertension, provide new insights into the pathophysiology of hypertension and indicate new targets for clinical intervention.</p>
  •  
8.
  • Surendran, Praveen, et al. (författare)
  • Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension
  • 2016
  • Ingår i: Nature Genetics. - Nature Publishing Group. - 1061-4036. ; 48:10, s. 1151-1161
  • Tidskriftsartikel (refereegranskat)abstract
    • High blood pressure is a major risk factor for cardiovascular disease and premature death. However, there is limited knowledge on specific causal genes and pathways. To better understand the genetics of blood pressure, we genotyped 242,296 rare, low-frequency and common genetic variants in up to 192,763 individuals and used -1/4155,063 samples for independent replication. We identified 30 new blood pressure- or hypertension-associated genetic regions in the general population, including 3 rare missense variants in RBM47, COL21A1 and RRAS with larger effects (>1.5 mm Hg/allele) than common variants. Multiple rare nonsense and missense variant associations were found in A2ML1, and a low-frequency nonsense variant in ENPEP was identified. Our data extend the spectrum of allelic variation underlying blood pressure traits and hypertension, provide new insights into the pathophysiology of hypertension and indicate new targets for clinical intervention.
  •  
9.
  • Liu, Dajiang J., et al. (författare)
  • Exome-wide association study of plasma lipids in &gt; 300,000 individuals
  • 2017
  • Ingår i: Nature Genetics. - NATURE PUBLISHING GROUP. - 1061-4036 .- 1546-1718. ; 49:12, s. 1758-1766
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>We screened variants on an exome-focused genotyping array in &gt;300,000 participants (replication in &gt;280,000 participants) and identified 444 independent variants in 250 loci significantly associated with total cholesterol (TC), high-density-lipoprotein cholesterol (HDL-C), low-densitylipoprotein cholesterol (LDL-C), and/or triglycerides (TG). At two loci (<em>JAK2</em> and <em>A1CF</em>), experimental analysis in mice showed lipid changes consistent with the human data. We also found that: (i) beta-thalassemia trait carriers displayed lower TC and were protected from coronary artery disease (CAD); (ii) excluding the <em>CETP</em> locus, there was not a predictable relationship between plasma HDL-C and risk for age-related macular degeneration; (iii) only some mechanisms of lowering LDL-C appeared to increase risk for type 2 diabetes (T2D); and (iv) TG-lowering alleles involved in hepatic production of TG-rich lipoproteins (<em>TM6SF2</em> and <em>PNPLA3</em>) tracked with higher liver fat, higher risk for T2D, and lower risk for CAD, whereas TG-lowering alleles involved in peripheral lipolysis (<em>LPL</em> and <em>ANGPTL4</em>) had no effect on liver fat but decreased risks for both T2D and CAD.</p>
  •  
10.
  • Erzurumluoglu, A Mesut, et al. (författare)
  • Meta-analysis of up to 622,409 individuals identifies 40 novel smoking behaviour associated genetic loci
  • 2019
  • Ingår i: Molecular Psychiatry. - Nature Publishing Group. - 1359-4184 .- 1476-5578.
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Smoking is a major heritable and modifiable risk factor for many diseases, including cancer, common respiratory disorders and cardiovascular diseases. Fourteen genetic loci have previously been associated with smoking behaviour-related traits. We tested up to 235,116 single nucleotide variants (SNVs) on the exome-array for association with smoking initiation, cigarettes per day, pack-years, and smoking cessation in a fixed effects meta-analysis of up to 61 studies (up to 346,813 participants). In a subset of 112,811 participants, a further one million SNVs were also genotyped and tested for association with the four smoking behaviour traits. SNV-trait associations with P &lt; 5 × 10<sup>-8</sup> in either analysis were taken forward for replication in up to 275,596 independent participants from UK Biobank. Lastly, a meta-analysis of the discovery and replication studies was performed. Sixteen SNVs were associated with at least one of the smoking behaviour traits (P &lt; 5 × 10<sup>-8</sup>) in the discovery samples. Ten novel SNVs, including rs12616219 near TMEM182, were followed-up and five of them (rs462779 in REV3L, rs12780116 in CNNM2, rs1190736 in GPR101, rs11539157 in PJA1, and rs12616219 near TMEM182) replicated at a Bonferroni significance threshold (P &lt; 4.5 × 10<sup>-3</sup>) with consistent direction of effect. A further 35 SNVs were associated with smoking behaviour traits in the discovery plus replication meta-analysis (up to 622,409 participants) including a rare SNV, rs150493199, in CCDC141 and two low-frequency SNVs in CEP350 and HDGFRP2. Functional follow-up implied that decreased expression of REV3L may lower the probability of smoking initiation. The novel loci will facilitate understanding the genetic aetiology of smoking behaviour and may lead to the identification of potential drug targets for smoking prevention and/or cessation.</p>
Skapa referenser, mejla, bekava och länka
Åtkomst
fritt online (50)
Typ av publikation
tidskriftsartikel (243)
Typ av innehåll
refereegranskat (242)
övrigt vetenskapligt (4)
Författare/redaktör
Khaw, Kay-Tee (195)
Tumino, Rosario (194)
Trichopoulou, Antoni ... (193)
Wareham, Nick (187)
Boeing, Heiner (186)
Overvad, Kim (183)
visa fler...
Riboli, Elio (179)
Palli, Domenico (139)
Kaaks, Rudolf (136)
Panico, Salvatore (123)
Weiderpass, Elisabet ... (117)
Boutron-Ruault, Mari ... (116)
Vineis, Paolo (108)
Sanchez, Maria-Jose (106)
Bueno-de-Mesquita, H ... (105)
Tjonneland, Anne (101)
Barricarte, Aurelio (100)
Tjønneland, Anne (93)
Lagiou, Pagona (93)
Travis, Ruth C (90)
Trichopoulos, Dimitr ... (86)
Peeters, Petra H. (85)
Romieu, Isabelle (83)
Dorronsoro, Miren (82)
Clavel-Chapelon, Fra ... (80)
Ardanaz, Eva (78)
Olsen, Anja (75)
Key, Timothy J (73)
Chirlaque, Maria-Dol ... (69)
Peeters, Petra H M (67)
Lund, Eiliv (65)
Skeie, Guri (65)
Jenab, Mazda (65)
Sacerdote, Carlotta (61)
Mattiello, Amalia (56)
Tjonneland, A (55)
Khaw, KT (55)
Trichopoulou, A (55)
Tumino, R (51)
Ferrari, Pietro (51)
Masala, Giovanna (50)
Gunter, Marc J. (50)
Bamia, Christina (50)
Rinaldi, Sabina (50)
Weiderpass, E, (49)
Overvad, K (48)
Amiano, Pilar (48)
Boeing, H (48)
Aleksandrova, Krasim ... (48)
Duell, Eric J. (48)
visa färre...
Lärosäte
Umeå universitet (118)
Lunds universitet (103)
Karolinska Institutet (64)
Göteborgs universitet (19)
Uppsala universitet (19)
Stockholms universitet (1)
Språk
Engelska (241)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (238)
Lantbruksvetenskap (3)
Naturvetenskap (2)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy